Files
sii/AISP3.ipynb
2025-12-15 22:14:13 +03:00

1458 lines
185 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "wwHZs5pbv5lw"
},
"source": [
"# Практическая работа №3\n",
"## по предмету \"Системы искусственного интеллекта\"\n",
"\n",
"Целью практической работы является изучение методов регрессии.\n",
"\n",
"В данно работе вам необходимо:\n",
"1. используя библиотеку sklearn, обучить линейную регрессию без использования регуляризации\n",
"2. изучить работу класса Lasso для регуляризации, подобрать наилучший параметр для данного набора данных.\n",
"3. изучить работу класса Ridge для регуляризации, подобрать наилучший параметр альфа для данного набора данных."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "EP_MhQGkw5sW"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>brand</th>\n",
" <th>processor_brand</th>\n",
" <th>processor_name</th>\n",
" <th>processor_gnrtn</th>\n",
" <th>ram_gb</th>\n",
" <th>ram_type</th>\n",
" <th>ssd</th>\n",
" <th>hdd</th>\n",
" <th>os</th>\n",
" <th>os_bit</th>\n",
" <th>graphic_card_gb</th>\n",
" <th>weight</th>\n",
" <th>warranty</th>\n",
" <th>Touchscreen</th>\n",
" <th>msoffice</th>\n",
" <th>Price</th>\n",
" <th>rating</th>\n",
" <th>Number of Ratings</th>\n",
" <th>Number of Reviews</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>ASUS</td>\n",
" <td>Intel</td>\n",
" <td>Core i3</td>\n",
" <td>10th</td>\n",
" <td>4 GB</td>\n",
" <td>DDR4</td>\n",
" <td>0 GB</td>\n",
" <td>1024 GB</td>\n",
" <td>Windows</td>\n",
" <td>64-bit</td>\n",
" <td>0 GB</td>\n",
" <td>Casual</td>\n",
" <td>No warranty</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>34649</td>\n",
" <td>2 stars</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Lenovo</td>\n",
" <td>Intel</td>\n",
" <td>Core i3</td>\n",
" <td>10th</td>\n",
" <td>4 GB</td>\n",
" <td>DDR4</td>\n",
" <td>0 GB</td>\n",
" <td>1024 GB</td>\n",
" <td>Windows</td>\n",
" <td>64-bit</td>\n",
" <td>0 GB</td>\n",
" <td>Casual</td>\n",
" <td>No warranty</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>38999</td>\n",
" <td>3 stars</td>\n",
" <td>65</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Lenovo</td>\n",
" <td>Intel</td>\n",
" <td>Core i3</td>\n",
" <td>10th</td>\n",
" <td>4 GB</td>\n",
" <td>DDR4</td>\n",
" <td>0 GB</td>\n",
" <td>1024 GB</td>\n",
" <td>Windows</td>\n",
" <td>64-bit</td>\n",
" <td>0 GB</td>\n",
" <td>Casual</td>\n",
" <td>No warranty</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>39999</td>\n",
" <td>3 stars</td>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>ASUS</td>\n",
" <td>Intel</td>\n",
" <td>Core i5</td>\n",
" <td>10th</td>\n",
" <td>8 GB</td>\n",
" <td>DDR4</td>\n",
" <td>512 GB</td>\n",
" <td>0 GB</td>\n",
" <td>Windows</td>\n",
" <td>32-bit</td>\n",
" <td>2 GB</td>\n",
" <td>Casual</td>\n",
" <td>No warranty</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>69990</td>\n",
" <td>3 stars</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>ASUS</td>\n",
" <td>Intel</td>\n",
" <td>Celeron Dual</td>\n",
" <td>Not Available</td>\n",
" <td>4 GB</td>\n",
" <td>DDR4</td>\n",
" <td>0 GB</td>\n",
" <td>512 GB</td>\n",
" <td>Windows</td>\n",
" <td>64-bit</td>\n",
" <td>0 GB</td>\n",
" <td>Casual</td>\n",
" <td>No warranty</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>26990</td>\n",
" <td>3 stars</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" brand processor_brand processor_name processor_gnrtn ram_gb ram_type \\\n",
"0 ASUS Intel Core i3 10th 4 GB DDR4 \n",
"1 Lenovo Intel Core i3 10th 4 GB DDR4 \n",
"2 Lenovo Intel Core i3 10th 4 GB DDR4 \n",
"3 ASUS Intel Core i5 10th 8 GB DDR4 \n",
"4 ASUS Intel Celeron Dual Not Available 4 GB DDR4 \n",
"\n",
" ssd hdd os os_bit graphic_card_gb weight warranty \\\n",
"0 0 GB 1024 GB Windows 64-bit 0 GB Casual No warranty \n",
"1 0 GB 1024 GB Windows 64-bit 0 GB Casual No warranty \n",
"2 0 GB 1024 GB Windows 64-bit 0 GB Casual No warranty \n",
"3 512 GB 0 GB Windows 32-bit 2 GB Casual No warranty \n",
"4 0 GB 512 GB Windows 64-bit 0 GB Casual No warranty \n",
"\n",
" Touchscreen msoffice Price rating Number of Ratings Number of Reviews \n",
"0 No No 34649 2 stars 3 0 \n",
"1 No No 38999 3 stars 65 5 \n",
"2 No No 39999 3 stars 8 1 \n",
"3 No No 69990 3 stars 0 0 \n",
"4 No No 26990 3 stars 0 0 "
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv('AISP2.csv')\n",
"\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Price 1.000000\n",
"ssd 0.628272\n",
"ram_gb 0.518323\n",
"graphic_card_gb 0.459986\n",
"processor_name_Core i7 0.377777\n",
"processor_name_Core i9 0.359096\n",
"brand_APPLE 0.312112\n",
"os_Mac 0.312112\n",
"processor_name_M1 0.274581\n",
"processor_brand_M1 0.274581\n",
"processor_name_Ryzen 9 0.253506\n",
"weight_Casual 0.247878\n",
"processor_gnrtn_12th 0.219060\n",
"Touchscreen_Yes 0.189126\n",
"ram_type_LPDDR3 0.181314\n",
"ram_type_LPDDR4X 0.173809\n",
"ram_type_DDR5 0.168689\n",
"processor_gnrtn_10th 0.164034\n",
"os_DOS 0.140780\n",
"brand_MSI 0.123952\n",
"msoffice_No 0.105752\n",
"warranty_3 years 0.080610\n",
"processor_name_Ryzen 7 0.061872\n",
"ram_type_DDR3 0.042006\n",
"processor_gnrtn_8th 0.040292\n",
"warranty_1 year 0.033312\n",
"brand_ASUS 0.032036\n",
"ram_type_LPDDR4 0.028034\n",
"processor_gnrtn_9th 0.021192\n",
"os_bit_32-bit 0.018458\n",
"processor_brand_AMD -0.001583\n",
"weight_Gaming -0.012524\n",
"os_bit_64-bit -0.018458\n",
"processor_gnrtn_4th -0.018769\n",
"processor_name_Core i5 -0.023218\n",
"brand_acer -0.024663\n",
"warranty_2 years -0.029339\n",
"brand_HP -0.030649\n",
"rating -0.033528\n",
"brand_Avita -0.033819\n",
"brand_Lenovo -0.039079\n",
"warranty_No warranty -0.045241\n",
"processor_gnrtn_7th -0.045656\n",
"processor_gnrtn_11th -0.085683\n",
"processor_brand_Intel -0.103966\n",
"processor_gnrtn_Not Available -0.105722\n",
"msoffice_Yes -0.105752\n",
"processor_name_Pentium Quad -0.111755\n",
"processor_name_Ryzen 5 -0.114138\n",
"Number of Ratings -0.140392\n",
"Number of Reviews -0.148738\n",
"processor_name_Ryzen 3 -0.150211\n",
"brand_DELL -0.166272\n",
"Touchscreen_No -0.189126\n",
"processor_name_Celeron Dual -0.200490\n",
"weight_ThinNlight -0.250425\n",
"hdd -0.252699\n",
"ram_type_DDR4 -0.270184\n",
"os_Windows -0.337929\n",
"processor_name_Core i3 -0.377232\n",
"Name: Price, dtype: float64"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['ram_gb'] = df['ram_gb'].str.replace(' GB', '').astype(float)\n",
"df['ssd'] = df['ssd'].str.replace(' GB', '').astype(float)\n",
"df['hdd'] = df['hdd'].str.replace(' GB', '').astype(float)\n",
"df['graphic_card_gb'] = df['graphic_card_gb'].str.replace(' GB', '').astype(float)\n",
"df['rating'] = df['rating'].str.replace(' stars', '').str.replace(' star', '').astype(float)\n",
"\n",
"df = pd.get_dummies(df, \n",
" columns=['brand', 'processor_brand', 'processor_name', 'ram_type', \n",
" 'os', 'os_bit', 'Touchscreen', 'msoffice', 'warranty', 'processor_gnrtn', 'weight'])\n",
"\n",
"df.corr(numeric_only=True)['Price'].sort_values(ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"y = df['Price']\n",
"\n",
"X = df.drop('Price', axis=1)\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>#sk-container-id-1 {\n",
" /* Definition of color scheme common for light and dark mode */\n",
" --sklearn-color-text: #000;\n",
" --sklearn-color-text-muted: #666;\n",
" --sklearn-color-line: gray;\n",
" /* Definition of color scheme for unfitted estimators */\n",
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
" --sklearn-color-unfitted-level-3: chocolate;\n",
" /* Definition of color scheme for fitted estimators */\n",
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
" --sklearn-color-fitted-level-1: #d4ebff;\n",
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
"\n",
" /* Specific color for light theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
" --sklearn-color-icon: #696969;\n",
"\n",
" @media (prefers-color-scheme: dark) {\n",
" /* Redefinition of color scheme for dark theme */\n",
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
" --sklearn-color-icon: #878787;\n",
" }\n",
"}\n",
"\n",
"#sk-container-id-1 {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"#sk-container-id-1 pre {\n",
" padding: 0;\n",
"}\n",
"\n",
"#sk-container-id-1 input.sk-hidden--visually {\n",
" border: 0;\n",
" clip: rect(1px 1px 1px 1px);\n",
" clip: rect(1px, 1px, 1px, 1px);\n",
" height: 1px;\n",
" margin: -1px;\n",
" overflow: hidden;\n",
" padding: 0;\n",
" position: absolute;\n",
" width: 1px;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-dashed-wrapped {\n",
" border: 1px dashed var(--sklearn-color-line);\n",
" margin: 0 0.4em 0.5em 0.4em;\n",
" box-sizing: border-box;\n",
" padding-bottom: 0.4em;\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-container {\n",
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
" so we also need the `!important` here to be able to override the\n",
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
" display: inline-block !important;\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-text-repr-fallback {\n",
" display: none;\n",
"}\n",
"\n",
"div.sk-parallel-item,\n",
"div.sk-serial,\n",
"div.sk-item {\n",
" /* draw centered vertical line to link estimators */\n",
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
" background-size: 2px 100%;\n",
" background-repeat: no-repeat;\n",
" background-position: center center;\n",
"}\n",
"\n",
"/* Parallel-specific style estimator block */\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item::after {\n",
" content: \"\";\n",
" width: 100%;\n",
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
" flex-grow: 1;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel {\n",
" display: flex;\n",
" align-items: stretch;\n",
" justify-content: center;\n",
" background-color: var(--sklearn-color-background);\n",
" position: relative;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item {\n",
" display: flex;\n",
" flex-direction: column;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
" align-self: flex-end;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
" align-self: flex-start;\n",
" width: 50%;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
" width: 0;\n",
"}\n",
"\n",
"/* Serial-specific style estimator block */\n",
"\n",
"#sk-container-id-1 div.sk-serial {\n",
" display: flex;\n",
" flex-direction: column;\n",
" align-items: center;\n",
" background-color: var(--sklearn-color-background);\n",
" padding-right: 1em;\n",
" padding-left: 1em;\n",
"}\n",
"\n",
"\n",
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
"clickable and can be expanded/collapsed.\n",
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
"*/\n",
"\n",
"/* Pipeline and ColumnTransformer style (default) */\n",
"\n",
"#sk-container-id-1 div.sk-toggleable {\n",
" /* Default theme specific background. It is overwritten whether we have a\n",
" specific estimator or a Pipeline/ColumnTransformer */\n",
" background-color: var(--sklearn-color-background);\n",
"}\n",
"\n",
"/* Toggleable label */\n",
"#sk-container-id-1 label.sk-toggleable__label {\n",
" cursor: pointer;\n",
" display: flex;\n",
" width: 100%;\n",
" margin-bottom: 0;\n",
" padding: 0.5em;\n",
" box-sizing: border-box;\n",
" text-align: center;\n",
" align-items: start;\n",
" justify-content: space-between;\n",
" gap: 0.5em;\n",
"}\n",
"\n",
"#sk-container-id-1 label.sk-toggleable__label .caption {\n",
" font-size: 0.6rem;\n",
" font-weight: lighter;\n",
" color: var(--sklearn-color-text-muted);\n",
"}\n",
"\n",
"#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
" /* Arrow on the left of the label */\n",
" content: \"▸\";\n",
" float: left;\n",
" margin-right: 0.25em;\n",
" color: var(--sklearn-color-icon);\n",
"}\n",
"\n",
"#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
" color: var(--sklearn-color-text);\n",
"}\n",
"\n",
"/* Toggleable content - dropdown */\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content {\n",
" display: none;\n",
" text-align: left;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content pre {\n",
" margin: 0.2em;\n",
" border-radius: 0.25em;\n",
" color: var(--sklearn-color-text);\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
" /* Expand drop-down */\n",
" display: block;\n",
" width: 100%;\n",
" overflow: visible;\n",
"}\n",
"\n",
"#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
" content: \"▾\";\n",
"}\n",
"\n",
"/* Pipeline/ColumnTransformer-specific style */\n",
"\n",
"#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator-specific style */\n",
"\n",
"/* Colorize estimator box */\n",
"#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
"#sk-container-id-1 div.sk-label label {\n",
" /* The background is the default theme color */\n",
" color: var(--sklearn-color-text-on-default-background);\n",
"}\n",
"\n",
"/* On hover, darken the color of the background */\n",
"#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"/* Label box, darken color on hover, fitted */\n",
"#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
" color: var(--sklearn-color-text);\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Estimator label */\n",
"\n",
"#sk-container-id-1 div.sk-label label {\n",
" font-family: monospace;\n",
" font-weight: bold;\n",
" display: inline-block;\n",
" line-height: 1.2em;\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-label-container {\n",
" text-align: center;\n",
"}\n",
"\n",
"/* Estimator-specific */\n",
"#sk-container-id-1 div.sk-estimator {\n",
" font-family: monospace;\n",
" border: 1px dotted var(--sklearn-color-border-box);\n",
" border-radius: 0.25em;\n",
" box-sizing: border-box;\n",
" margin-bottom: 0.5em;\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-0);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-estimator.fitted {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-0);\n",
"}\n",
"\n",
"/* on hover */\n",
"#sk-container-id-1 div.sk-estimator:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-2);\n",
"}\n",
"\n",
"#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-2);\n",
"}\n",
"\n",
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
"\n",
"/* Common style for \"i\" and \"?\" */\n",
"\n",
".sk-estimator-doc-link,\n",
"a:link.sk-estimator-doc-link,\n",
"a:visited.sk-estimator-doc-link {\n",
" float: right;\n",
" font-size: smaller;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1em;\n",
" height: 1em;\n",
" width: 1em;\n",
" text-decoration: none !important;\n",
" margin-left: 0.5em;\n",
" text-align: center;\n",
" /* unfitted */\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted,\n",
"a:link.sk-estimator-doc-link.fitted,\n",
"a:visited.sk-estimator-doc-link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
".sk-estimator-doc-link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover,\n",
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
".sk-estimator-doc-link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"/* Span, style for the box shown on hovering the info icon */\n",
".sk-estimator-doc-link span {\n",
" display: none;\n",
" z-index: 9999;\n",
" position: relative;\n",
" font-weight: normal;\n",
" right: .2ex;\n",
" padding: .5ex;\n",
" margin: .5ex;\n",
" width: min-content;\n",
" min-width: 20ex;\n",
" max-width: 50ex;\n",
" color: var(--sklearn-color-text);\n",
" box-shadow: 2pt 2pt 4pt #999;\n",
" /* unfitted */\n",
" background: var(--sklearn-color-unfitted-level-0);\n",
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link.fitted span {\n",
" /* fitted */\n",
" background: var(--sklearn-color-fitted-level-0);\n",
" border: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"\n",
".sk-estimator-doc-link:hover span {\n",
" display: block;\n",
"}\n",
"\n",
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
"\n",
"#sk-container-id-1 a.estimator_doc_link {\n",
" float: right;\n",
" font-size: 1rem;\n",
" line-height: 1em;\n",
" font-family: monospace;\n",
" background-color: var(--sklearn-color-background);\n",
" border-radius: 1rem;\n",
" height: 1rem;\n",
" width: 1rem;\n",
" text-decoration: none;\n",
" /* unfitted */\n",
" color: var(--sklearn-color-unfitted-level-1);\n",
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
"}\n",
"\n",
"#sk-container-id-1 a.estimator_doc_link.fitted {\n",
" /* fitted */\n",
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
" color: var(--sklearn-color-fitted-level-1);\n",
"}\n",
"\n",
"/* On hover */\n",
"#sk-container-id-1 a.estimator_doc_link:hover {\n",
" /* unfitted */\n",
" background-color: var(--sklearn-color-unfitted-level-3);\n",
" color: var(--sklearn-color-background);\n",
" text-decoration: none;\n",
"}\n",
"\n",
"#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
" /* fitted */\n",
" background-color: var(--sklearn-color-fitted-level-3);\n",
"}\n",
"\n",
".estimator-table summary {\n",
" padding: .5rem;\n",
" font-family: monospace;\n",
" cursor: pointer;\n",
"}\n",
"\n",
".estimator-table details[open] {\n",
" padding-left: 0.1rem;\n",
" padding-right: 0.1rem;\n",
" padding-bottom: 0.3rem;\n",
"}\n",
"\n",
".estimator-table .parameters-table {\n",
" margin-left: auto !important;\n",
" margin-right: auto !important;\n",
"}\n",
"\n",
".estimator-table .parameters-table tr:nth-child(odd) {\n",
" background-color: #fff;\n",
"}\n",
"\n",
".estimator-table .parameters-table tr:nth-child(even) {\n",
" background-color: #f6f6f6;\n",
"}\n",
"\n",
".estimator-table .parameters-table tr:hover {\n",
" background-color: #e0e0e0;\n",
"}\n",
"\n",
".estimator-table table td {\n",
" border: 1px solid rgba(106, 105, 104, 0.232);\n",
"}\n",
"\n",
".user-set td {\n",
" color:rgb(255, 94, 0);\n",
" text-align: left;\n",
"}\n",
"\n",
".user-set td.value pre {\n",
" color:rgb(255, 94, 0) !important;\n",
" background-color: transparent !important;\n",
"}\n",
"\n",
".default td {\n",
" color: black;\n",
" text-align: left;\n",
"}\n",
"\n",
".user-set td i,\n",
".default td i {\n",
" color: black;\n",
"}\n",
"\n",
".copy-paste-icon {\n",
" background-image: url();\n",
" background-repeat: no-repeat;\n",
" background-size: 14px 14px;\n",
" background-position: 0;\n",
" display: inline-block;\n",
" width: 14px;\n",
" height: 14px;\n",
" cursor: pointer;\n",
"}\n",
"</style><body><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>LinearRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>LinearRegression</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.linear_model.LinearRegression.html\">?<span>Documentation for LinearRegression</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"\">\n",
" <div class=\"estimator-table\">\n",
" <details>\n",
" <summary>Parameters</summary>\n",
" <table class=\"parameters-table\">\n",
" <tbody>\n",
" \n",
" <tr class=\"default\">\n",
" <td><i class=\"copy-paste-icon\"\n",
" onclick=\"copyToClipboard('fit_intercept',\n",
" this.parentElement.nextElementSibling)\"\n",
" ></i></td>\n",
" <td class=\"param\">fit_intercept&nbsp;</td>\n",
" <td class=\"value\">True</td>\n",
" </tr>\n",
" \n",
"\n",
" <tr class=\"default\">\n",
" <td><i class=\"copy-paste-icon\"\n",
" onclick=\"copyToClipboard('copy_X',\n",
" this.parentElement.nextElementSibling)\"\n",
" ></i></td>\n",
" <td class=\"param\">copy_X&nbsp;</td>\n",
" <td class=\"value\">True</td>\n",
" </tr>\n",
" \n",
"\n",
" <tr class=\"default\">\n",
" <td><i class=\"copy-paste-icon\"\n",
" onclick=\"copyToClipboard('tol',\n",
" this.parentElement.nextElementSibling)\"\n",
" ></i></td>\n",
" <td class=\"param\">tol&nbsp;</td>\n",
" <td class=\"value\">1e-06</td>\n",
" </tr>\n",
" \n",
"\n",
" <tr class=\"default\">\n",
" <td><i class=\"copy-paste-icon\"\n",
" onclick=\"copyToClipboard('n_jobs',\n",
" this.parentElement.nextElementSibling)\"\n",
" ></i></td>\n",
" <td class=\"param\">n_jobs&nbsp;</td>\n",
" <td class=\"value\">None</td>\n",
" </tr>\n",
" \n",
"\n",
" <tr class=\"default\">\n",
" <td><i class=\"copy-paste-icon\"\n",
" onclick=\"copyToClipboard('positive',\n",
" this.parentElement.nextElementSibling)\"\n",
" ></i></td>\n",
" <td class=\"param\">positive&nbsp;</td>\n",
" <td class=\"value\">False</td>\n",
" </tr>\n",
" \n",
" </tbody>\n",
" </table>\n",
" </details>\n",
" </div>\n",
" </div></div></div></div></div><script>function copyToClipboard(text, element) {\n",
" // Get the parameter prefix from the closest toggleable content\n",
" const toggleableContent = element.closest('.sk-toggleable__content');\n",
" const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';\n",
" const fullParamName = paramPrefix ? `${paramPrefix}${text}` : text;\n",
"\n",
" const originalStyle = element.style;\n",
" const computedStyle = window.getComputedStyle(element);\n",
" const originalWidth = computedStyle.width;\n",
" const originalHTML = element.innerHTML.replace('Copied!', '');\n",
"\n",
" navigator.clipboard.writeText(fullParamName)\n",
" .then(() => {\n",
" element.style.width = originalWidth;\n",
" element.style.color = 'green';\n",
" element.innerHTML = \"Copied!\";\n",
"\n",
" setTimeout(() => {\n",
" element.innerHTML = originalHTML;\n",
" element.style = originalStyle;\n",
" }, 2000);\n",
" })\n",
" .catch(err => {\n",
" console.error('Failed to copy:', err);\n",
" element.style.color = 'red';\n",
" element.innerHTML = \"Failed!\";\n",
" setTimeout(() => {\n",
" element.innerHTML = originalHTML;\n",
" element.style = originalStyle;\n",
" }, 2000);\n",
" });\n",
" return false;\n",
"}\n",
"\n",
"document.querySelectorAll('.fa-regular.fa-copy').forEach(function(element) {\n",
" const toggleableContent = element.closest('.sk-toggleable__content');\n",
" const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';\n",
" const paramName = element.parentElement.nextElementSibling.textContent.trim();\n",
" const fullParamName = paramPrefix ? `${paramPrefix}${paramName}` : paramName;\n",
"\n",
" element.setAttribute('title', fullParamName);\n",
"});\n",
"</script></body>"
],
"text/plain": [
"LinearRegression()"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"model = LinearRegression()\n",
"model.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MSE: 638671150.10\n",
"RMSE: 25271.94\n",
"R²: 0.6723\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"from sklearn.metrics import mean_squared_error, r2_score\n",
"\n",
"y_pred = model.predict(X_test)\n",
"\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"r2 = r2_score(y_test, y_pred)\n",
"\n",
"print(f'MSE: {mse:.2f}')\n",
"print(f\"RMSE: {np.sqrt(mse):.2f}\") # рублей\n",
"print(f'R²: {r2:.4f}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.145e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.426e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.029e+11, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.723e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.081e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.170e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.424e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.027e+11, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.675e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.079e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.187e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.422e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.024e+11, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.606e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.076e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.198e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.420e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.019e+11, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.507e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.072e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.206e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.416e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.011e+11, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.366e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.066e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.212e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.410e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.001e+11, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.166e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.058e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.215e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.401e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.859e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.887e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.046e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.218e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.389e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.648e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.505e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.028e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.220e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.371e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.352e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.994e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.004e+11, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.221e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.345e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.943e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.336e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.699e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.222e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.307e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.393e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.527e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.234e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.222e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.252e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.676e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.591e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.614e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.223e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.174e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.780e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.589e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.818e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.223e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.061e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.724e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.611e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.844e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.223e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.899e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.565e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.750e+10, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.722e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.223e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.672e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.247e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.049e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.527e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.224e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.355e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.169e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.480e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.361e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.224e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.923e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.284e+10, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.958e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.333e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.224e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.349e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.609e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.961e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.263e+10, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.181e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.612e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.909e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.964e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.558e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.606e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.668e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.912e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.966e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.566e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.606e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.625e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.916e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.979e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.574e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.288e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.517e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.921e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.002e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.583e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.293e+10, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.451e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.928e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.015e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.595e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.498e+09, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.542e+10, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 7.252e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.382e+08, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.774e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.802e+09, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 8.491e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.398e+08, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.464e+08, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.515e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 5.829e+09, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.993e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.825e+08, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.574e+08, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.574e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.505e+09, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.212e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.009e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.709e+08, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.918e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.678e+09, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.289e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.323e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 9.880e+08, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 3.941e+09, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.177e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.148e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.352e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.009e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.147e+08, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.406e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.284e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.395e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.009e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.300e+08, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 4.709e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.354e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.444e+09, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.025e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.461e+08, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.627e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.325e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.770e+08, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.163e+09, tolerance: 9.526e+07\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.621e+08, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 2.929e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.454e+09, tolerance: 1.135e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.903e+08, tolerance: 1.074e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.807e+08, tolerance: 1.139e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.186e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.430e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n",
"c:\\Users\\Serafim\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:695: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 1.654e+08, tolerance: 1.100e+08\n",
" model = cd_fast.enet_coordinate_descent(\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAHbCAYAAAApo0k8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAW2VJREFUeJzt3Qd409X6wPG3e0BboKWl7DJliCAK4laW4v47QQQXet2oqCgqol7HdVxQUa9ecVwHiHsgigwBZSiIypRRhuzZQksHbf7PeyAxbZM2SdMmv+T7eZ7Q5peTX05OU/rm5D3vibDZbDYBAAAAQlRkoDsAAAAA1CQCXgAAAIQ0Al4AAACENAJeAAAAhDQCXgAAAIQ0Al4AAACENAJeAAAAhDQCXgAAAIQ0Al4AAACENAJeAEBAnX766ebi6307d+7s9z4BCC0EvIDFvfrqq9K/f3/JyMiQmJgYadSokZx22mnyzjvvSGlpaaC7Bx9dffXVEhER4bjExcVJu3bt5OGHH5aCgoIybe+77z456aSTzOX444+Xn376KWD9RkUE5UDgRQe6AwCq5+2335bMzEx56KGHJDk5Wfbt2yfz5883AdM333wjH3zwQaC7CB9pkPvf//7XfJ+TkyOff/65PPbYY7J27Vp57733HO2uu+46efrpp833Y8eOlSuvvFKys7MD1m8ACDYEvIDFzZ4928zsOrv99tslNTVVXnrpJXnyySelZcuWAesffBcdHS2DBw92XL/55pvlxBNPNG9inn/+eTOrr3Tm185ms0lkJB/eAYAz/lcELK58sGtnD3Kdgx+dITznnHOkcePGZvawdevWZsawpKSkwkewzh+np6WlmfstXbq0TDu97ZFHHilz7JlnnjHHy+dk6sfw2laDs/j4eDMr/X//939mtlKtX7/e3O+tt94qc79bbrnFHNcZaztto8diY2Nl586dZdrPmzfP0e9ffvmlzG2TJ0+W7t27S0JCgnlOGkxu3ry5wtitXLlSLrvsMmnYsKFp2759exk1apS5TZ+D89i4usyaNatGPsrWc5988skmqF23bl2F2/Xno/3TYLgqeXl5cvfdd0uzZs3Ma0Gf47PPPmvO7fx4lV2qyrt988035cwzz5T09HTzGB07dpRXXnmlyr7p+On5J02aJA888IBJ06lTp46cf/75smnTJpf3Wb58uZxxxhmSmJgoTZo0kX/9619lbi8qKjLpIPrzT0lJMec75ZRTZObMmeIJ/X2yP2/9ndI+XX755bJx40bxh99//928xlu1amV+P/T81157rezevbtMu/3798vw4cNNf3RMdWz79u0rixcvdrRZvXq1XHzxxeYceq6mTZvKFVdcYT4lsDt06JD53df/A/Q8ej4d68LCQr88HyDYMMMLhAhNZdA/YvoHcdGiRSZ40T9yzZs3LxMo1q1bV+666y7zdcaMGSYIyM3NNYGqs6OOOsoEeRoAaVCqQdSAAQMq/QOvfdAZ5fI0oD733HNl+vTppk933HGH6ee0adNMkKZ/dF1Zs2aNvP76624fLyoqSt5991258847ywRZ+ke+fJ6rPvdrrrnG5LhqH7dv3y7jxo2TH3/8UX799VepV6+eI/DQQEjfSNxwww0mENDn/+WXX8o///lPE6S3adPGcV597A4dOpi2dnq9pugbA1W/fv0yxzUAPvvss2X06NFywQUXVHoO/Zlq8KjBnqZDdO3aVb799lu55557zBuAf//736bd//73P8d95syZI6+99pq5Td8sKPsMszsa3Hbq1Mk8ls5W6xjqLLXmlusbmaroeGuAqTnKO3bsMOkaffr0kSVLlpg3InZ79+6Vs846y/xs9I3KRx99ZO5z9NFHmzFR+hrX9JCBAwfKsGHDzOvvjTfeMPnvCxcuNGNQFX1d6M9Z+6+vW+3Pli1bzNhUl/4u6M9QX6MaqC5btsyMt37VFCUdB/WPf/zDPL9bb73VvIHQgHju3LmyYsUKOfbYY01gr89JA9fbbrvNnEt/pl999ZX5/dRgX11//fUmHeqSSy4xb3wWLFhgfi/0PJ9++mm1nw8QdGwAQkL79u11as5xGTJkiK24uLhMm/z8/Ar3u/HGG22JiYm2goICx7HTTjvNXJw98MAD5rw7duxwHNPro0ePdly/9957benp6bbu3buXuf+ECRNM2+eff77C45eWlpqv2dnZps2bb77puO2yyy6zde7c2dasWTPb0KFDHce1jbYdOHCg7eijj3Ycz8vLsyUnJ9sGDRpkbv/555/N8aKiItMvPdfBgwcd7b/66ivT7uGHH3YcO/XUU21JSUm2DRs2uOxneS1atCjTN2c6Bp06dbL5Qs9Zp04d286dO81lzZo1tmeffdYWERFhnodzf9auXWv6MX78eI/O/dlnn5nn/fjjj5c5fskll5jz62OVZx9z/Tl5ytXrrX///rZWrVqVOVb+9TZz5kzzWE2aNLHl5uY6jn/44Yfm+Lhx48rcV4+98847jmOFhYW2Ro0a2S6++GLHsUOHDpnjzvbu3WvLyMiwXXvttVU+F1c/Z32d6e9OVTx5Hbgaqw8++MA8t9mzZzuOpaSk2G655Ra35/n111/NfSZPnuy2zZIlS0yb66+/vszxESNGmOMzZsyo4hkB1kNKAxAidGZTZ4l0MZPO2ulX51lH5TwrpjNcu3btMrNW+fn55mN8Z8XFxeZ2TRnQNAGd9enSpYtjdq88nUV68cUXzeI5nT129vHHH5v76YxTefaZq/J0llpTEHTWyV1O6lVXXWX6bU9d0MfRGazevXuXaae36wyhzi7q7K+dpmnoTPbXX39trutz1Zxo/SjZeWa8sn5WRWe3dRz1orNv3tC0A02r0IvOKo8YMcJUYtDUFOf+6DjoDOaHH37oKPF18OBBt+edMmWKmR3XXG9nOtOn72N0saM/OL/e9ON0HQOtIKIzmc4fr7szZMgQSUpKclzX2UhNhdH+O9PXm3Ous6a69OjRo0zahz5fPa50hnbPnj3mE5HjjjuuTDpAZXTWVJ+Dvpb0d00/ISn/WvPHWOmnE/o4J5xwgrnu3D/9JEJnY3Vm2RX7DK7O2OvvtSv28dNPesr//JX99wEIJQS8QIjo1auX+bh30KBB5qPbRx991ATB+pG9nX48etFFF5k/ilrRQQMpe6BQPgDR0lZ6u+YI6kIpDQ40AHUX+OlH6ZobfOONN1a4TVMCNEdUP9b21MiRI00wrqkQ7mj/NGidMGGCua5fhw4dWiFA3rBhg/mqfShPA1777fYAyZ95txqQ24NWez7w+++/79F9NTjXwEov+rPUVAkNtpyDI6U/Yw3gNPfVfinfxpk+X/1ZOQeTzqkY9vGoLu2XviY1X1YDNR0DzRNVngS8bdu2LXNdX3sa+NvTOuw0R7X861JTPjTVwZl+hK9v2nRcdVGn9keDO0/6oiZOnGjuo6kc/fr1M/nP9ioa1aU/P0310XPrz04fJysry9zm3D/NTdZ0Cn1sDeo1Z9s5sNf7aCCr/dI3mZreMH78+DLn0J+v/o44p+YoTX/Qn5O/fv5AMCHgBUKUzoYpnQ1Smr+ns2u//fabCYY1n1IDKXs5q/I1ezUwsAdbGqBpgKAzh9u2bavwWJr3pzmyjz/+uNtFdN747rvv5Pvvv3f0rTI6G6tVC7QPOjvrvLgtGGgOsPM4ahCiM7Kal1kVnZXUgFEv+rw0B1rH39WbimCjb3J09lNnKjX/WwNLHQN7vrU/a0TrOLnivABPc711DDVfXHN3p06davqji+o87YsGuc5vQPRTEl0oV9lsuqc091jz1TVH95NPPjG/A9pH5dw/bacBrn6aom9aNPde86SdZ+Wfe+45k4uuby60bzqTr23++usvv3xqAVgRi9aAEGX/I2wPBnTWTxe46B/TU0891dHOXb1WnSHTQMtOg139A6t/6O+///4ybfW6LvrRVeuuaJChgbemSVQVEGuQorO7OhNt/0i3MrooSWfsdDGcVjDQxyq/iKhFixbm66pVq0yA40yP2W/XFfKqfDWK6tDZTedx1FlrrSKgAY0nz8+ZfpyvAeOYMWNMwOzt/e30+eobCg3YnGd57Wkt9vGoDn1DpSkAX3zxRZn0EE+rItirDZR/behCRn0z5i1d6KU/X339Owd6+smEN+Pv/LPU2Xr99OOzzz4zi+F8pTPR+mZGf666iNTd83fuh6bn6EVn/HWxmi7wsy/QU7pgTy8PPvig+bRGU2F0kxp9U6o/Xw2i9fzOCyx1Iae+MfbHzx8INszwAhZXPp/RTmeL9A+7PcCzB77Os16aU/ryyy97FUCXL1uk+b2aU/rUU0+5nTHSEkk606d1gctz7o/9Y2OdnXJV7cEVTZPQXE+9j872uqJ5mpqaoX/wnfuvs2I6M6xpEUo/RtY3A5oaUb4aRfl++so+W+duVrIqmgetpbd0vH2l1TY0t7j8z0MrMOjP0Dlw8pWr15t+rK5vmDyluwVqUO4ctG7dutWn/rnqj74J09evr9z9Tvijb0qrQDjTn1n59At9XesbUXsfNJdb04+caeCrKQz2Nvrzd3V+ezk7++8DEEqY4QUsTnN2NQ9VZ0Q1/08XXmkgpzNpWlZM/9gpnYnSWVvNcdWPODWw0bJT7gI5ne3Rj4GVBqv/+c9/THBZPqdWZyq1DqjzzFd5GpBq8KK5hVoCSmc5dUGWzjLqLJVzGS09n5aNcpVv647WE9WSWuVLddnprLKmR2jJJ03r0Nk4e1kyTTlwLmv2wgsvmJlinTXTRX+aE6k5o/qRvJbD8taBAwccH01rnqaeX/vja1ChqSX6PPSNigbrvpRAO++888xH8fr60Od2zDHHmHHXNy5a49VdmThv6Mf/ukhMH0tTMHQc9E2YBmgatHqiQYMG5mehz1d/Xhqgad6pvj68pa9bnd3V3xMde/1kQ98AaWkv7ZsnNJXA/juhizT1DYPmwnuycE1/L3V2tTx9fenOePpGS/Nz9VMQ+ycA5T990eBf85U1XUl/ZrpYT3+Hfv75Z5PGoHQhnZYsu/TSS03Naw1+9fdcg2p946n0vvr/gJY9s6c66e+l5jhfeOGF5rUBhJxAl4kAUD2vvPKKbcCAAbbGjRvboqOjbfXq1TOln6ZMmVKh7Y8//mg74YQTbAkJCaa9lhH79ttvTSkiLQVVvtST/aLnPOmkkyqcU2/TMlaLFi0qc9xVWTMtuzRq1ChbVlaWLSYmxpSN0jJYWlLLuSyZ9m3z5s2VloSyl8iylx0rz93tkyZNsnXr1s0WFxdna9Cgge3KK6+0/fXXXxXuv3TpUttFF11knnd8fLwp+fbQQw/5VJbM1Th+8803Nk/LkrmiYxYVFeX2cT2xf/9+25133mleB/rzaNu2re2ZZ55xW37Nl7JkX3zxha1Lly5mDFu2bGl7+umnHSXqnM/jriyZluW6//77TUk5fV2cc845FcrFuSv5pWOjPxs7fV5PPPGEOaY/f30daFm68u3c0TbOP8u0tDRbv379bPPmzavyvuVfB86X3r17mzb6OrS/5rT02KWXXmrbsmVLmdJ/WlbtnnvusR1zzDGmdJ6+PvT7l19+2fFY69atM2XWWrdubcZdX+dnnHGG7fvvvy/TJy1ZOGbMGMfvo5b+07F2Lk8IhJII/SfQQTcAAHaab66zjFoVxL74EgCqgxxeAAAAhDQCXgAAAIQ0Al4AAACENHJ4AQAAENKY4QUAAEBII+AFAABASGPjCTc7IW3ZssVsucle4wAAAMFHs3J1QxbdbVB3E6wMAa8LGuw2a9Ys0N0AAABAFTZt2mR2IawMAa8LOrNrH0DdNrKm6VaSuo2kbsWpW47ib4yNa4yLe4yNa4yLa4yLe4yNa4xL8IxNbm6umaC0x22VIeB1wZ7GoMFubQW8iYmJ5rH45SmLsXGNcXGPsXGNcXGNcXGPsXGNcQm+sfEk/ZRFawAAAAhpBLwAAAAIaQS8AAAACGkEvAAAAAhpBLwAAAAIaQS8AAAACGkEvAAAAAhpBLwAAAAIaQS8AAAACGkEvAAAAAhpbC0MAACCXkmpTRZm75Ed+wskPSleemQ1kKjICL+09/bcsB4CXgAAENRB6dSlW2XMl8tla06B41hmSryMPq+jnNU5s1rtvT03rImAFwAAVFtNBaXa7qZ3F4ut3P235RSY468MPtbn9t6eG9ZFDi8AAKh0Fnbe2t3y+ZLN5qteL88eODoHr86Bo97uS3t9LA2KKz6imGN6eeDTpTJ9+Xb5dtk2+XLJFhn58R+Vtn/482Wy+0ChFB0qrfTcSm939XxhPczwAgAAl37bHSFPPjdbtuUWup2FrSoo1QQFvb1vx0ZyqLRU9hwokgc/W1ppoHnHxCXSvtFa2ZFbKNtyywbF5e3JK5Lr3vnF4+e0Y3+hdH/8+yrbaV80INeUi16tUz0+P4ITAS8AAKjg22XbZcKf+kHw38Guq4/7563dVWGm1lXg2OGhqVJUUurRYxceKpXf/8rxuK/N6idIWlKc5B4slrU788SfNL+4PJ30XZC9R3bnH2KRm0UQ8AIAEEY8WSimbR6fstLl/e2zsLd/8Kuk1S2bg1sZe7Crj+RJksD1p2RJk3oJZna4Kv+65BgzC6spFwNfn19l+/9d20Pyiw7Jje8urrLte/M3SGqdODmxdapERkaYNwJjFkfJvvl/zyqzyC34EfACABAmPF0o9s0fW4+kMbiftSwqsckWD4NdNe7yrnL6UemybHOODPrvgirb9z4qwwTjr81eZ2aVXQXJ2rtGKYeDdqVf9flU1f7ENmnmemVt7Rau3yuD31ggWWl15Njm9eTjxZsrtGGRW/Bj0RoAAGGgsoVi/3h3sYz5cqnc99HvctozM+XWD3716JzD+7SVeSPPlEbJ8W5D44gjgeW5xzSWlIQY6dkq1Vyvqr195lmDcfvx8u2U3m6fofamfVVt9fLguR1kSK8WUjcuWrJ35TkFu2XvwSK34EfACwBAiKtqYZl688cNMumXTbJhd34l87pl9cxKlcx6CfLI+TUTlCqdMdWZU52ZdabXXc2oetO+qrbXn9xKHr2gsyx4oLcMOyXL40VuCD6kNAAAEOJ5uXqbJ7m253XJlP87tql0a15Pzhqr1Rn0PhFVphLYA8fy6RKN3OS2+tJeqzx4uqmFN+09aVsnLlo6N0kRXxe5IfAIeAEACNG83P6dGsmyLbny6g9rPDpXn44ZcsZR6eb7BwccJbdOXFJhkZmrWdiaDkqVHvemPJg37T1pq/3zhKftULsIeAEAsCh3O4VtPZKX2zgl3quFZc7BWv9OGXJtu1KZsi2xTB1ed7OwNR2UBlpVC+LEKfcYwYeAFwCAEMvLtdNgNyYqQvp2zDAlu/blF3tU7cDumFSb3HvlqfLrX/s9moUNZfbcY32D8feWGmXd3rtNWI6NFbBoDQAAC/I0L/eVwd3l5Su7y5P/d7THC8VczcJe0LWJ+RrOAZ3Oar94xTFSL7bs8egjY/L+gk1SUFwSmM6hUszwAgBgQdur2HLXLq/wkE8LxeCapnoUry+Rhh1PcOy0pqkMF738o/yxOUfu/eh3GXdFV4mICN83BsGIgBcAAItVXZi/bre8MH2113m53i4Ug2s6XD2zGkhMTIzjmM6iX/XGAvnity1yVGaS3Hx6m4D2EWUR8AIAYJGqC60b1pWnvlkp01fuqHKbXnd5uVZaKGYlOqaPnN9JHvxsqTzz7Sppl55kql4gOBDwAgBgkaoL9gBXg9ZBPZqb2rAjP/7dtPGkdBhq1uATWsiKrbny3oKNMnzSEvn05hOlbUZSoLsFAl4AAKxTdUFv69shXUYO6GBme1VKQjR5uUFk9HmdZM2OA7Ige49c/84v8slNJ8qf2w+QQhJgBLwAAFio6sK1J7dyBLuKvNzgEhsdKS9feaxcMP5Hs01zrydnSFFJaYX0FN6M1C7KkgEAEAQ83ZLWVTtKhwWX1LpxcvWJLc33zsGu0o0rNG1F01dQewh4AQAIAnHRnv1JZutaa6SnvDE32+Vt9pQVTUPRdqgdpDQAABDAUmOHSkrlf/M3yHPfrar0/u6qLsB66Ska5urt2o6KGbWDgBcAgACVGhvYo7lM+WOrrNy23xxr1iBBNu05WKHcGFUXwic9BTWDgBcAgACVGnt+2p/m+3qJMXJP//ZyxfHNZdrybVRdsDhP005IT6k9BLwAAASw1FhibJR8f+dpkpYUZ65TdcH69OelM/i6QM3Vz570lNrHojUAAAJYaiy/qERW7zhQ5hhVF6xNf146I6/c/eRIT6ldBLwAANSQbbnkcoYrnal/ZfCxZia3vJFnH0V6Si0jpQEAAD9WXbDf9tXvW+SZqSs9Ohe5nKGpfHrKxJ83yby1u2XDnvxAdy3sEPACAOCnqgsPndNRDtls8sL01WZ7WVW+4oIzcjlDnz09RTWsG2cC3i+WbJFRAzpInTjCsNrCSAMA4KeqCze/v9hxPTk+Woad0kqa1k+Quz78zRyj1Fh4O6FVqrRITTRbDn/9+1a57Phmge5S2CCHFwAAP1Zd0NB1eJ+2MnfkmXJb77Zy0bFNXeZy6nU9Ti5n+IiMjJDLjwS5H/y8MdDdCSvM8AIA4EFerqdVFzQY7pmVKsnxMY5jlBqD3SXdm8rz3/0pv27cJ6u27Zf2jZIC3aWwQMALAEAlebn2DR90C+CZK7f7XHXBOZcT4Uvf7PTpkCFTl22TDxZulEfO7xToLoUFAl4AQNj7dtl2uW3ibxVSFXTjgH+8u1gGdG4kizfu87jMGFUXUJkrejQzAe+nv242JcriY6IC3aWQRw4vACCsldpEHp+y0mVerv3YlKXbTLBbLyFa6sS6D04ijswKU3UBlTmlbUNpUi9Bcg4Wy9Sl2wLdnbBAwAsACOmcXC0D9fmSzearXi9vbW6EbMstrPJct5/ZRhaM6iPPXXaMCWzLZ99SdQGe0tfHZccdWby2kMVrtYGUBgBAWObkKr3tl12eBaet0+tKXHSUYwet8uduVO7cQGUuO76pjJv+pyzI3iPrdh6QVg3rBrpLIY2AFwAQUpUUKquVa8/J7dMh3dRCXW02h4j0Oi+XqguorsyUBDm9fbrMWLlDJv28Se4f0CHQXQppBLwAgJCata2sVq792PcrdpivGp82r2OTXcXRcqCwxKvd0Ki6gOq64vhmJuD9aNFfcne/9hIbTaZpTWFkAQBBn2frPGtbvg6uztrq8W/+2Cobd+fLuO//rLJWriMnd+QZcufRJfLURZ3Jy0WtO/OodElPipPdeUUybblnJe/gG2Z4AQABSTvwdMbW01lb3dbXVtkWaC5ycuslHt4con+nDPJyUeuioyLl0uOayviZa2XizxvlnC68zmoKAS8AwG8BrDdBbGV5tnrcvu3u3rwi+WzJ5qp3OLNpmoFI8wZ1JHtXnte1csnLRSBcflxzE/DOWb1LNu3Jl2YNEgPdpZBEwAsAIRJoetPWm/aeBrDeBLGezNje/sGvUjfuD9mTXyye+tfFXeTCbk3l5KdnmMe0VZGTW1pyqMxt5OWitjVPTZST26TJ3DW7zOK1Ef3bB7pLIYmAN8D0P30tSbJoV4SkZu+RXm3S/fIHytu2wXru1MRoUxS+MsHY75o+d7emle+9Hqz95tw1M1PqbVtv2nsawNqfW1VB7P2f/CHbcwtk8YZ9Vc7YFpXYHMFuWp1Y2ZVXJFVpXC/RjKc+D+2fjqytkpzcUtfr1IBaNbBHcxPwTl60SYb3aWtSHeBfBLwBVPYPTpS8s/oXv/yB8rZtsJ+7XmyUxLTcLud2bWqpftfkuRslx8mARhEyoMKZg7vftXHu3u3TLNlvX2dKPW3rPC7+nIV98LOlEhsVKTkFxR4FsXvzi2X0F8vFUyP6tZdrTmpptl71dNZWUSsXVtK3Y4ak1omV7bmFMnPVTnMd/hVhs3mT4h8ecnNzJSUlRXJyciQ5OblGHsPdHxz77IPzHzNv24faufVPa4REWK7fNX1um9jkpSu6lnkjYIV+1/S5X7ziGCnZsEgGDBggMTExlul3+ZlSDe7cBY/24G7ufWea6560/X74yfL1N1PlpNPOlAtfXSA797vfWaxuXLRZSLN+Z57M/HOn+NvRTZKlcUqCfOvBqvQPhp3gSDGwj6G4mbUt//PxZEa9uLhYpkyZ4ni94G+MTe2OyxNTVshrs9dJ76PS5Y2rjxcrKq7l14w38RozvAHgyazJQ58vk6y0OuY/Zm2vsyietFeetrXKufXPmc2C/Xa0/WyZtEz14txH2nty7ke+WiGtM5K9Orcu6PG037p4wptzN6l3eLFFVW31di267um59Xb7AqNRn1bedvSXK+TKliKLN+4TiYissr3eXic22ix4eqCKtvpxfGmpSGSkSEmJTUZ9Xnn7+z7+Q3YdKJJSm02e/XZVpW1HTP5d/ticY/qxaW9+pTOleh+9/dJXfpJDNptHbTuN+f7wf/kLZ0tVDhQekjd/XC+ealIvwfw+lNgOlxerygMDOprA05sZW19nbcnJhVVcfnwzE/BqXd6vf98ih0ptLJz0I2Z4AzDDq38QBr4+3+/nBQB/6d0hXdLqxplFNJ7OwtpnpqsKYnVmWv+A+zJj60uOdWWYxXSPsan9cenz/A+yxuz+Jx6lVAWb4iCe4SUrOgD0P2lPJMZGmRqR+tXT9t60DYdz14mNMhdP29ZPjPGqfY2dOy7KXDxt26BOrMft68ZFmYsnkuKiJK1urCTFefZhUFJ8tCTHe9Y2JSFGGiXHm6+e0PHTi0f9iLZJ8wYJpu+eyEyONxdPtExNlONa1JfWR2b4q9K5SbJ0aerZG+dT2qaZfNUBnRt51P6GU7PkptNae9T25YHHyDM9Dsk7V3f3qP31J7eSJy462vyxdRdK6vFMp1lY+2Ix+23l25bfwME+Y6tBsDO97i7YtT+OBtgXdG1ivjL7hVCgbwDLB7vOufV6O3xHSkMAlK/96M4bQ483/5l7OiOs7ZWnbcPh3P/14tz/DaZzD/Hi3EO8O/frXpz7NS/P/dpVx3l87lcHd/fq3C9feThQ86Tt0HalcsfAU+SXjbketX/+8q4en/vJ/+viVb9HDTgcAHrS9ubT2zhmSn/1YKb0vrM6mOtao7aqtrqj07frxQSnGqR6kkrgTbUDX9MOqH0L/J3q6Ir+3ulvg96uvyv8bviGgDcAvPmD40t7zh0e59b/BjMt2O+aP3ectE7Os2C/K86UehpoetPW23P7kjfrbRBLni3Cnf6ueJKLr+34XfFNUKQ0jB8/Xlq2bCnx8fHSs2dPWbhwodu2p59+ukRERFS4nHPOOY42mpb88MMPS2ZmpiQkJEifPn1k9erVEiy8/djPm/aheG77n2Sr9bs2zj3q7KMs2e+aHhN7XGWlfrubKfXk435vUwN8aa95t5qrO+6KruarXq8sp5C0A8D/qY6etkMQBryTJk2Su+66S0aPHi2LFy+WY445Rvr37y87duxw2f6TTz6RrVu3Oi5Lly6VqKgoufTSSx1t/vWvf8kLL7wgr776qixYsEDq1KljzllQEDwvlJr8AxVq564Xe7jUlNX6XbPnjpNr25VK/04ZFut3zZ87VMbE20DT26DU2/YEsEDgUx09bYcgrNKgM7rHH3+8vPTSS+Z6aWmpNGvWTG677TYZOXJklfcfO3asmc3V4FcDW306jRs3lrvvvltGjBhh2ujqvYyMDHnrrbfkiiuuCIo6vM55O/PW7JDv5iyQfqf0ZKc1Fzut7Vw+X849x/2Kz3Ddae3bqd+4XQkbrP2ujXO7WyUc7P2uaay4d41xcY+xqb1x8bbCSbAqDuIqDQHN4S0qKpJFixbJ/fff7zgWGRlpUhDmzZvn0TneeOMNE8RqsKuys7Nl27Zt5hx2OhgaWOs5XQW8hYWF5uI8gPYfnF5q2rFNk2R3ms181X3dq9rq8rjm+kM9/IOtqr03bYPx3Dr+01Yc/llYqd81fW77eFQ2LsHY79o4d2VjE8z9rmmevGbCEePiHmNTu+My6uz2ctvE39zm1uvttfX/hVVeM948TkAD3l27dklJSYmZfXWm11euXFnl/TXXV1MaNOi102DXfo7y57TfVt6TTz4pY8aMqXD8u+++k8TEw4X0a8O0adNq7bGshrFxjXFxj7FxjXFxjXFxj7GpvXG5pl2EfLI+UvYV/T2LmxJrk/9rWWp2kJyyQSxhWi29ZvLz88OjSoMGukcffbT06NGjWufRGWbNI3ae4dW0in79+tV4SoMys5jTpknfvn352KgcxsY1xsU9xsY1xsU1xsU9xqb2x2WAiNxbapP563bLsHd/leISm7xzfS/pkFnzsYgVXzP2T+SDPuBNS0szC862by+7n7peb9So8sLreXl5MnHiRHn00UfLHLffT8+hVRqcz9m16+Fam+XFxcWZS3n6w6rNX/LafjwrYWxcY1zcY2xcY1xcY1zcY2xqd1z0jKd3yJSeWRtl7ppd8tuWA9KlubVKkcXU0mvGm8cIaJWG2NhY6d69u0yfPt1xTBet6fVevXpVet/JkyebvNvBgweXOZ6VlWWCXudz6jsArdZQ1TkBAACCwfEtD9fl1kWuqL6ApzRoKsHQoUPluOOOM6kJWnVBZ2+vueYac/uQIUOkSZMmJs+2fDrDhRdeKKmpZd/1aE3e4cOHy+OPPy5t27Y1AfBDDz1kKjdoewAAgGB3fFZ98/Xn7D2mApXGN7BwwHv55ZfLzp07TWkxXVSmaQdTp051LDrbuHGjqdzgbNWqVTJ37lyzqMyVe++91wTNN9xwg+zbt09OPvlkc07d2AIAACDYdWtWX2KiImRbboH8tfegNGtQe4voQ1HAA1516623mosrs2bNqnCsffv25t2OO/ouSHN7y+f3AgAAWEFCbJQc3SRFFm/cJwuy9xDwWn2nNQAAAFR0fFYDR1oDqoeAFwAAIAj1tAe86wl4q4uAFwAAIAh1b9FAdK3aul15Zjty+I6AFwAAIAilJMTIUY0Obzrxy/q9ge6OpRHwAgAABKkeLQ+XJ6Meb/UQ8AIAAAT5wjUC3uoh4AUAAAhSPY7suLZiW67kFhQHujuWRcALAAAQpNKT46VlaqLo9gOLyOP1GQEvAABAEDv+yCzvQsqT+YyAFwAAIIj1YAOKaiPgBQAAsEDA+9tf+6SguCTQ3bEkAl4AAIAg1rxBoqQnxUlxiU2WbNoX6O5YEgEvAABAEIuIiCCtoZoIeAEAAIKcPeBl4ZpvCHgBAAAsUqlh8Ya9cqikNNDdsRwCXgAAgCDXPiNJkuOjJa+oRJZvzQ10dyyHgBcAACDIRUZG/F2PlzxerxHwAgAAWCmPl4DXawS8AAAAFnC8vVLD+j1i072G4TECXgAAAAvo3DhF4mMiZW9+sazZcSDQ3bEUAl4AAAALiI2OlGOb1zffU57MOwS8AAAAFsHCNd8Q8AIAAFgEO675hoAXAADAIro1ryfRkRGyJadA/tqbH+juWAYBLwAAgEUkxkZL5yYp5nvSGjxHwAsAAGDFtAYWrnmMgBcAAMBCerBwzWsEvAAAABZyXMvDpcnW7syTXQcKA90dSyDgBQAAsJB6ibFyVKMk8/0vpDV4hIAXAADAsvV49wa6K5ZAwAsAAGAxxx9ZuLZw/e5Ad8USCHgBAAAsunBt+ZZc2V9QHOjuBD0CXgAAAItplBIvzeonSKlNZPzMtTJv7W4p0StwiYAXAADAYqYu3Sq7DhSZ71/9Ya0MfH2+nPz0DHMcFRHwAgAAWIgGtTe9u1gOFpeUOb4tp8AcJ+itiIAXAADAIjRtYcyXy8VV8oL9mN5OekNZBLwAAAAWoburbc0pcHu7hrl6O7uwlUXACwAAYBE79hf4tV24IOAFAACwiPSkeL+2CxcEvAAAABbRI6uBZKbES4Sb2/W43q7t8DcCXgAAAIuIioyQ0ed1NN+XD3rt1/V2bYe/EfACAABYyFmdM+WVwceazSecpdaNNcf1dpQVXe46AAAAgpwGtX07NjLVGMZ8uUxWbtsvd/RpS7DrBjO8AAAAFqRpC71ap8oZR6Wb6yu27g90l4IWAS8AAICFdWqcbL4u25Ib6K4ELQJeAAAAC+uYeTjgXbk1Vw6VlAa6O0GJgBcAAMDCWqbWkTqxUVJ4qFSyd+UFujtBiYAXAADAwiIjI6TDkVle0hpcI+AFAAAImTzenEB3JSgR8AIAAFhcxyMB7/KtzPD6pQ7vihUrZOLEiTJnzhzZsGGD5OfnS8OGDaVbt27Sv39/ufjiiyUuLs7b0wIAAMBHnRqnOFIabDabRESw05pPM7yLFy+WPn36mMB27ty50rNnTxk+fLg89thjMnjwYDO4o0aNksaNG8vTTz8thYWFnp4aAAAA1dA2o65ER0bIvvxi2ZJTEOjuWHeGV2duR4wYIR999JHUq1fPbbt58+bJuHHj5LnnnpMHHnjAX/0EAACAG3HRUdImva7ZcW3Z5hxpUi8h0F2yZsD7559/SkxMTJXtevXqZS7FxcXV7RsAAAC8SGvQgFfzePt1ahTo7lgzpUGD3Zdeekn27dvncXsAAADUDnZc81OVBnuO7qBBg2TGjBne3BUAAAC1EPAuJ+CtXsC7bds2efXVV2Xr1q3St29fycrKMovWNm3a5M1pAAAA4GcdjgS8m/cdlH35RYHujnUD3oSEBBkyZIjMnDlTVq9eLVdddZW88cYbJvA966yzZPLkyeTuAgAABEByfIw0b5BovmeW108bT7Rq1UoeffRRyc7Olm+++UZSU1Pl6quvliZNmvh6SgAAAFQDebw1tNOaFjaOjo42X7UWLzO8AAAAgdExky2G/Rrwat6uzvDqTK/m827ZskVef/11k98LAACA2tepCVsMV3tr4aKiIvnkk09kwoQJpkpDZmamDB06VK699loT+AIAACDwWwyv3ZknBcUlEh8TFeguWS/gbdSokeTl5cl5550nX375pfTv318iI6udFQEAAAA/SE+Kk7S6sbLrQJHZhKJrM/e744YTrwLeBx980FRmaNiwYc31CAAAAD7RNVUdMpNlzupdJo+XgPcwr6Znr7nmGpk4caLk5lbMC8nJyZEXX3zR5W0AAACo3bQGSpP5GPDq1sKzZ8+W5OTDCdHOUlJSZM6cOSboBQAAQGBQmqyaAe/HH38s//jHP9zefuONN8pHH33kzSkBAADgRx2PBLwrt+VKSakt0N2xXsC7du1aadu2rdvb9TZtAwAAgMDISq0jibFRUlBcKtm7DgS6O9YLeKOioky9XXf0Nqo2AAAABE5k5OGFa4q0hsO8ik67desmn332mdvbP/30U9MGAAAAgUMebzXKkt16661yxRVXSNOmTeWmm24yM76qpKREXn75Zfn3v/8t77//vjenBAAAgJ+xxXA1Zngvvvhiuffee+X222+XBg0amNlcvej3w4cPl7vuuksuueQSb04p48ePl5YtW0p8fLz07NlTFi5cWGn7ffv2yS233GJ2eYuLi5N27drJlClTHLc/8sgjpgad8+Woo47yqk8AAAChUprMZmPhmlczvOqf//ynXHDBBfLee+/JmjVrzCCedtppMmjQIOnRo4dX55o0aZIJkl999VUT7I4dO9bs3rZq1SpJT093ubVx3759zW1aDaJJkyayYcMGqVevbFHlTp06yffff//3k4z2+mkCAABYVtuMuhIdGSF784tla06BNK6XIOHMp0hQA1tvg1tXnn/+eRk2bJjZ0EJp4Pv111/LhAkTZOTIkRXa6/E9e/bITz/9JDExMeaYzg6XpwGuboMMAAAQjuJjoqRNel2zvfCyLblhH/AGrKSCztYuWrRI+vTp83dnIiPN9Xnz5rm8zxdffCG9evUyKQ0ZGRnSuXNneeKJJ0wOsbPVq1dL48aNpVWrVnLllVfKxo0ba/z5AAAABGM93uUsXPNthtcfdu3aZQJVDVyd6fWVK1e6vM+6detkxowZJojVvF1Nqbj55puluLhYRo8ebdpoasRbb70l7du3l61bt8qYMWPklFNOkaVLl0pSUpLL8xYWFpqLnX17ZD2vXmqa/TFq47GshrFxjXFxj7FxjXFxjXFxj7Gx/rgclVHXfF26eV9IxjPePE6ELUCZzFqzV3NwNT1BZ23tdFHcDz/8IAsWLKhwH12gVlBQINnZ2Y4KEZoW8cwzz5jg1t0itxYtWph21113ncs2utBNA+PytOJEYmJiNZ4lAABAYKzJEXlxebQ0iLPJ6GPLfhoeCvLz880aspycHElOPjybHXQzvGlpaSZo3b59e5njet1d/q1WZtDcXXuwqzp06CDbtm0zKRKxsbEV7qML2jRQ1tlgd+6//36zeM55hrdZs2bSr1+/KgfQX+9Qpk2bZhbk2XOTcRhj4xrj4h5j4xrj4hrj4h5jY/1xyT1YLC8unyl7CiPkxNP7Sr3EmJAaG/sn8p4IWMCrwWn37t1l+vTpcuGFF5pjpaWl5rrW+3XlpJNOMrOu2s6+o9uff/5pAmFXwa46cOCA2e74qquuctsXLW+ml/L0h1WbL+bafjwrYWxcY1zcY2xcY1xcY1zcY2ysOy6pMTHSrEGCbNpzUFbvypcTW6eF1Nh48xgeB7xab1dr2npi8eLFHrXTWdWhQ4fKcccdZ6o+aFmyvLw8R9WGIUOGmLSHJ5980lzXzS5eeuklueOOO+S2224zi9N00ZrWBbYbMWKEnHfeeSaNQdMmNLdXZ4QHDhzo6VMFAAAICZ0yU0zAqwvXaivgDUYeB7z2WVilebS6s1rHjh0d+bfz58+XZcuWmUVknrr88stl586d8vDDD5u0hK5du8rUqVMdC9m0uoJ9JldpmsG3334rd955p3Tp0sUEwxr83nfffY42f/31lwlud+/eLQ0bNpSTTz7Z9E2/BwAACLdKDVOXbQv7LYY9DnjtVRDU9ddfb2ZVH3vssQptNm3a5FUHNH3BXQrDrFmzKhzTAFsDWHcmTpzo1eMDAACEqk6UJvO9Du/kyZNNukF5gwcPlo8//tiXUwIAAKCGthhes/OAFBSHXqWGGg14ExIS5Mcff6xwXI/Fx8f7o18AAACopozkOEmtEyslpTZZtW2/hCufqjQMHz7cLCDTxWn2LYa1bq5u/fvQQw/5u48AAADwgRYc6Ng4Weas3mXyeI9pVk/CkU8B78iRI822vePGjZN3333XUQ/3zTfflMsuu8zffQQAAICPOh4JeJdvzZFw5XMdXg1sCW4BAACskce7LIwXrvmUwwsAAABr6Jh5uFLDyq37TS5vOPJ4hrd+/foebzyxZ8+e6vQJAAAAfpKVVkcSYqLkYHGJZO86IG3SkyTceBzw6i5oAAAAsJaoyAjpkJkkizfuM2kNBLyV0C2AAQAAYM083sUb95kNKC7o2kTCjc+L1kpKSuSzzz6TFStWmOudOnWS888/X6KiovzZPwAAAPihUkM4L1zzKeBds2aNDBgwQDZv3izt27c3x5588klp1qyZfP3119K6dWt/9xMAAADV3WJ4a67YbDaP12WFdZWG22+/3QS1mzZtMptP6GXjxo2SlZVlbgMAAEDwaJeRJJERInvyiuSdeetl3trdYVWxwacZ3h9++EHmz58vDRo0cBxLTU2Vp556Sk466SR/9g8AAADVNGvVDomMiJBSm01Gf7HcHMtMiZfR53WUszpnSqjzaYY3Li5O9u+vuB/zgQMHJDY21h/9AgAAgB9MXbpVbnp3sRwqN6O7LafAHNfbQ51PAe+5554rN9xwgyxYsMDkgehFZ3z/8Y9/mIVrAAAACDxNWxjz5XJxlbxgP6a3h3p6g08B7wsvvGByeHv16iXx8fHmoqkMbdq0kXHjxvm/lwAAAPDawuw9sjWnwO3tGubq7doulHmcw5ubmyvJyYdX+NWrV08+//xzU63BXpasQ4cOJuAFAABAcNix332w60u7sNhaeOvWrZKeni5nnnmmfPLJJybAJcgFAAAITulJ8X5tF/IpDXXr1pXdu3eb72fNmiXFxcU12S8AAABUU4+sBqYag7uqu3pcb9d2oczjGd4+ffrIGWecYVIX1EUXXeS2IsOMGTP810MAAAD4JCoywpQe02oMGtw6L02zB8F6u7YLZR4HvO+++668/fbbsnbtWlOHV7cSTkxMrNneAQAAoFrO6pwprww+1lRjcF7A1iiM6vB6HPAmJCSYsmPql19+kaefftosXgMAAEBwO6tzpvTt2Eien7ZKxs9cKx0yk+Sr204J+ZndapUlmzlzpiPY/fHHH6WwsNDf/QIAAIAfRUVGSJ8OGeZ73WI4XIJdnwNeZ2effbZs3rzZP70BAABAjclKq2O+bs8tlLzCQxIuqh3w6i5rAAAACH71EmOlfmKM+X797jwJF9UOeAEAAGC9Wd71u/IlXFQ74P3Pf/4jGRmH80EAAAAQ3FoeCXizdx2QcOFxlQZ3Bg0a5J+eAAAAoMa1cgS8zPC6tGPHjjLXlyxZIkOHDpWTTjpJLrnkErMDGwAAAIJXyzCc4fUq4M3MzHQEvT/99JP06NFDNmzYYALe3Nxc6du3r8yePbum+goAAIBqapl6JId3d/jM8Eb7WpHhkUcekauuukreeOMNx7Hhw4fLmDFjZPr06f7tJQAAAPy6aG1PXpHk5BdLypGqDaHM50VrS5culWHDhpU5ptd///13f/QLAAAANaBOXLSkJ8WZ77PDpDSZ1wHv/v37TfpCfHy8xMUdHiw7PZafHz7T4wAAANYuTZYn4cDrgLddu3ZSv359Wb9+vfzyyy9lblu2bJk0btzYn/0DAABADQW868Ik4PUqh3fmzJkVFrE5y87OlhtuuME/PQMAAECNyAqzGV6vAt7TTjut0tvvuOOO6vYHAAAAtVaaLE/CQaQvFRoAAABg/c0n1u/KC4sYz+OAt1OnTjJx4kQpKiqqtN3q1avlpptukqeeesof/QMAAICfNWuQKBERIvsLD8muA5XHdmGV0vDiiy/KfffdJzfffLPZYOK4444zC9S0MsPevXtl+fLlMnfuXLNw7dZbbzVBLwAAAIJPfEyUNE5JkM37Dsr63XnS8EiZMgn3gLd3796mKoMGtZMmTZL33nvP7LJ28OBBSUtLk27dusmQIUPkyiuvNFUcAAAAELxaNaxjAl7N4z2+ZQMJZV4tWlMnn3yyuQAAAMDaWwzPWb0rLBau+bzTGgAAAKwrK4xKkxHwAgAAhCF7wMsMLwAAAEJ7hnd3npSWhnZpMgJeAACAMNS0foJER0ZIQXGpbMstkFBGwAsAABCGoqMiTT3ecMjj9Srg1TJk//nPfxybT4wfP76m+gUAAIBaSmtYR8D7N62xq7V4L7zwQhP0ai1eAAAAWLc0WTjM8HpVh/fQoUPy+uuvy5QpU+SWW26puV4BAACgxmU1DI9KDV7N8CYnJ5uvAwYMkBYtWshvv/1WU/0CAABADcs6MsObvTu0A16vZnhvvfVWM8sbHR0to0aNkrp169ZczwAAAFArM7yb9uTLoZJSs5AtFHn1rM4//3wT7KqIiAgZPnx4hTaa4wsAAIDgl5kcL3HRkVJcYpPN+w5KqPIpjD9w4IAcPFh2UJYsWSLnnXee9OzZ0199AwAAQA2KjIxwLFwL5TxerwLeTZs2Sa9evSQlJcVc7rrrLsnPz5chQ4aYQLdOnTry008/1VxvAQAA4Fct0xJDPuD1Kof3nnvukYKCAhk3bpx88skn5uucOXNMsLt27Vpp2rRpzfUUAAAAftfSvsUwAe9hs2fPNoHuCSecIJdddpk0atTI1OZ1lcsLAACA4NcqDDaf8CqlYfv27ZKVlWW+T09Pl8TERDn77LNrqm8AAACorc0ndhPw/n2HyMgy38fGxvq7TwAAAKjl0mSb9x6UwkMlIuGe0mCz2aRdu3amJJm9WkO3bt3KBMFqz549/u0lAAAAakTDunFSJzZK8opKTD3eNulJEtYB75tvvllzPQEAAECti4iIMLO8SzfnyrqdeQS8Q4cOrbmeAAAAIGB5vEs354ZsHm9o7h8HAAAArys1ZO/Kl1BEwAsAABDmWjoC3gMSigh4AQAAwlxLx+YTzPACAAAghFMatuUWSH7RIQk1BLwAAABhrl5irNRLjAnZWV6vqjTYlZSUyFtvvSXTp0+XHTt2SGlpaZnbZ8yY4a/+AQAAoBZkpdWRXzfuk+xdedKxcbJIuAe8d9xxhwl4zznnHOncubNjIwoAAABYU1bq4YA3FEuT+RTwTpw4UT788EMZMGCA/3sEAACAgMzwKt18ItT4lMMbGxsrbdq08X9vAAAAENhKDbsJeI27775bxo0bJzabzf89AgAAQMBmeLN3hV7A61NKw9y5c2XmzJnyzTffSKdOnSQm5vCqPrtPPvnEX/0DAABALc7w7skrkpyDxZKSUDa+C7sZ3nr16slFF10kp512mqSlpUlKSkqZizfGjx8vLVu2lPj4eOnZs6csXLiw0vb79u2TW265RTIzMyUuLk7atWsnU6ZMqdY5AQAAwl3duGhpmBRnvl8fYrO8Ps3wvvnmm3558EmTJsldd90lr776qglMx44dK/3795dVq1ZJenp6hfZFRUXSt29fc9tHH30kTZo0kQ0bNpgA3NdzAgAA4O+0hp37C01awzHN/o6vrC6gG088//zzMmzYMLnmmmukY8eOJkhNTEyUCRMmuGyvx/fs2SOfffaZnHTSSWYWV2eZjznmGJ/PCQAAgL9Lk4ViHq9PM7xKZ1i1NNnGjRvNzKuzxYsXV3l/vc+iRYvk/vvvdxyLjIyUPn36yLx581ze54svvpBevXqZlIbPP/9cGjZsKIMGDZL77rtPoqKifDqnKiwsNBe73Nxc87W4uNhcapr9MWrjsayGsXGNcXGPsXGNcXGNcXGPsQnPcWneIN58Xbtjv9fPsbbHxpvH8SngfeGFF2TUqFFy9dVXm8BTZ1PXrl0rP//8swlGPbFr1y6zY1tGRkaZ43p95cqVLu+zbt06s4vblVdeafJ216xZIzfffLN5wqNHj/bpnOrJJ5+UMWPGVDj+3Xffmdnh2jJt2rRaeyyrYWxcY1zcY2xcY1xcY1zcY2zCa1x279bNxKLkt3VbZcqUv4J6bPLz82s24H355Zfltddek4EDB5od1+69915p1aqVPPzwwybloKboFsaah6uPrTO63bt3l82bN8szzzxjAl5f6Yyw5v06z/A2a9ZM+vXrJ8nJNb+1ngbs+uLQ/OTyFS/CHWPjGuPiHmPjGuPiGuPiHmMTnuPSdvsBmfDnT7L3UIycfXY/r3bTre2xsX8iX2MBr6YxnHjiieb7hIQE2b9/v/n+qquukhNOOEFeeumlKs+h1R00aN2+fXuZ43q9UaNGLu+jlRl0APV+dh06dJBt27aZdAZfzqm02oNeytPHqs0Xc20/npUwNq4xLu4xNq4xLq4xLu4xNuE1Lq0ykkVj3AOFhyS3yCZpdWODdmy8eQyfFq1p8GifyW3evLnMnz/ffJ+dne3xZhS6W5vO0E6fPr3MDK5e1zxdV3ShmqYxaDu7P//80wTCej5fzgkAAIDD4mOipHFKQsgtXPMp4D3zzDPNAjKl+bt33nmnmb6+/PLLTX1eT2kaweuvvy5vv/22rFixQm666SbJy8sz51RDhgwpswBNb9dA+4477jCB7tdffy1PPPFEmbzhqs4JAACA8NpxzaeUBs2htc+yarCZmpoqP/30k5x//vly4403enweDZB37txpcn81LaFr164ydepUx6IzTZ3QKgt2mlf77bffmgC7S5cupg6vBr9apcHTcwIAAMC9lmmJMndNaG0+4VPAq0GocyB6xRVXmIsvbr31VnNxZdasWRWOaWqCPYXCl3MCAADAvay0uiE3w+vzxhNz5syRwYMHmwBUKyWo//3vfzJ37lx/9g8AAAC1KCvtcEnWsA94P/74Y7Ndr1Zo+PXXXx2bNuTk5JicWgAAAFh7hnf97jwpLfWsGEFIBryPP/642bJXF4c5l4TQKgqe7LIGAACA4NS0foJERUZIQXGpbN9fIGEb8K5atUpOPfXUCsdTUlJk3759/ugXAAAAAiAmKlKaNziS1rAzNNIafK7Dq/Vwy9P8Xd1xDQAAANbVMvVIwLs7jAPeYcOGmXJgCxYsMFvObdmyRd577z0ZMWKEqXsLAAAA62ppr8UbIjO8PpUlGzlypKnD27t3b8nPzzfpDbo1rwa8t912m/97CQAAgFqf4Z2/brfMW7tbemQ1MHm9YRXw6qzuqFGj5J577jGpDQcOHJCOHTtK3bqHV/UBAADAmqYu3Srjph9OXV26JVcGvj5fMlPiZfR5HeWszpkSVnV4VWxsrAl0e/ToQbALAAAQAsHuTe8ulj15RWWOb8spMMf19pCf4b322ms9ajdhwgRf+wMAAIAAKCm1yZgvl4uryrt6TBMa9Pa+HRtZLr3Bq4D3rbfekhYtWki3bt3EZguNQsQAAAAQWZi9R7bmuK+7q5Gf3q7terVOlZANeLUCwwcffCDZ2dlyzTXXmK2FGzRoUHO9AwAAQK3Y4eEmE562s2wO7/jx42Xr1q1y7733ypdffinNmjWTyy67TL799ltmfAEAACwsPSner+0svWhNy48NHDhQpk2bJsuXL5dOnTrJzTffLC1btjTVGgAAAGA9PbIamGoM7rJz9bjeru3CqkpDZGSkKVGms7slJSX+6xUAAABqVVRkhCk9psoHvfbrervVFqz5FPAWFhaaPN6+fftKu3bt5I8//pCXXnpJNm7cSGkyAAAACzurc6a8MvhYaZRSNm1Br+txq9bh9WrRmqYuTJw40eTuaokyDXzT0tJqrncAAACoVWd1zjSlxyb/sklGfvKHJMdHy9z7zrTkzK5PAe+rr74qzZs3l1atWskPP/xgLq588skn/uofAAAAallUZIT07ZhhAt7cgkOmRm/YBLxDhgwxObsAAAAIbfUTYyUmKkKKS2yy80ChNKmXIFbl9cYTAAAACH2RkRHSsG6cbMkpkB25BZYOeKtVpQEAAAChKz358OK17bmFYmUEvAAAAHApIznOsrurOSPgBQAAgEsZjhleAl4AAACEoPSkIzO8pDQAAAAgpHN49xPwAgAAIIRTGnaQ0gAAAIBQXrS2nYAXAAAAoSgj6fAM7978Yik8VCJWRcALAAAAl+olxkhs1OFwcaeF83gJeAEAAOBSRESENDxSqcHKm08Q8AIAAKDqzScsnMdLwAsAAICqKzWQ0gAAAIBQ3nxiOzO8AAAACOnNJ3KZ4QUAAEBIpzQUiFUR8AIAAMCDRWvM8AIAACAEpR/ZfGI7M7wAAAAI5RneffnFUlBszd3WCHgBAADgVkpCjMRGW3u3NQJeAAAAVLrbmiOP16JpDQS8AAAA8CyP16IL1wh4AQAAUCn7DK9VN58g4AUAAEClmOEFAABASMuw+OYTBLwAAACoVHqStTefIOAFAACARzO85PACAAAgJGWwaA0AAAChLP3IDG9uwSFL7rZGwAsAAIBKJcdHS9yR3dasmMdLwAsAAAAPdls7ksdrwUoNBLwAAAAI6TxeAl4AAAB4nMdrxc0nCHgBAADgeS1eUhoAAAAQ0rut5TLDCwAAgBCUQQ4vAAAAQllGknV3WyPgBQAAgMeL1nbsJ6UBAAAAISj9SErD/oJDkl90SKyEgBcAAABVSoqLloSYKEsuXCPgBQAAgIe7rVlz4RoBLwAAAEI6j5eAFwAAAF5tPsEMLwAAAEJ784n9zPACAAAgBGWQwwsAAIBQlmHR7YUJeAEAAOCRhvYc3v3M8AIAACAEZTDDCwAAgHAIeA8UHpK8QuvstkbACwAAAI/UjYuWOrFRlqvUQMALAAAArzefsFKlBgJeAAAAhPTmE0ER8I4fP15atmwp8fHx0rNnT1m4cKHbtm+99ZbZy9n5ovdzdvXVV1doc9ZZZ9XCMwEAAAhtGRZcuBYd6A5MmjRJ7rrrLnn11VdNsDt27Fjp37+/rFq1StLT013eJzk52dxupwFteRrgvvnmm47rcXGH340AAACg+ptP7LBQabKAz/A+//zzMmzYMLnmmmukY8eOJvBNTEyUCRMmuL2PBriNGjVyXDIyMiq00QDXuU39+vVr+JkAAACEvvQkew4vM7weKSoqkkWLFsn999/vOBYZGSl9+vSRefPmub3fgQMHpEWLFlJaWirHHnusPPHEE9KpU6cybWbNmmVmiDXQPfPMM+Xxxx+X1NRUl+crLCw0F7vc3Fzztbi42Fxqmv0xauOxrIaxcY1xcY+xcY1xcY1xcY+xcY1xEUmtczh83JZzsMw41PbYePM4ETabzSYBsmXLFmnSpIn89NNP0qtXL8fxe++9V3744QdZsGBBhftoILx69Wrp0qWL5OTkyLPPPiuzZ8+WZcuWSdOmTU2biRMnmlnirKwsWbt2rTzwwANSt25dc9+oqMOlNJw98sgjMmbMmArH33//fXMeAAAAHLYmR+TF5dHSMN4mD3YrkUDJz8+XQYMGmXhQ011DKuB1Fd136NBBBg4cKI899pjLNuvWrZPWrVvL999/L7179/ZohrdZs2aya9euKgfQH/Q5TJs2Tfr27SsxMTE1/nhWwti4xri4x9i4xri4xri4x9i4xriIrN+dJ33H/mjq8S55qHfAxkbjtbS0NI8C3oCmNGgndcZ1+/btZY7rdc279YQOaLdu3WTNmjVu27Rq1co8lrZxFfBqvq+rRW167tp8Mdf241kJY+Ma4+IeY+Ma4+Ia4+IeY+NaOI9L4/p1zde8ohIpLI0wm1EEYmy8eYyALlqLjY2V7t27y/Tp0x3HNC9XrzvP+FampKRE/vjjD8nMzHTb5q+//pLdu3dX2gYAAABVqxMX7QhyrVKLN+BVGrQk2euvvy5vv/22rFixQm666SbJy8szVRvUkCFDyixqe/TRR+W7774zaQqLFy+WwYMHy4YNG+T66693LGi75557ZP78+bJ+/XoTPF9wwQXSpk0bU+4MAAAA1ZN+pDSZVQLegNfhvfzyy2Xnzp3y8MMPy7Zt26Rr164ydepUR6mxjRs3msoNdnv37jVlzLStVmDQGWLNAdaSZkpTJH7//XcTQO/bt08aN24s/fr1M/m91OIFAACovoykeFm3M0927rdGabKAB7zq1ltvNRdXtLyYs3//+9/m4k5CQoJ8++23fu8jAAAArDnDG/CUBgAAAFhze+HtFtl8goAXAAAAXklPYoYXAAAAYTDDu8MiObwEvAAAAPAt4GWGFwAAAKGd0lAoAdy012MEvAAAAPCpSsPB4hLZX3hIgh0BLwAAALySGBstSfGHq9vusEClBgJeAAAAhHQeLwEvAAAAfM/j3U/ACwAAgBCUYaHNJwh4AQAAENLbCxPwAgAAwGsZSdbZfIKAFwAAAD7P8LJoDQAAACEpgxxeAAAAhENKw/bcgqDfbY2AFwAAAD6nNBQeKpXcguDebY2AFwAAAF6Lj4mSZMdua8Gdx0vACwAAgJDO4yXgBQAAQDUDXmZ4AQAAEMqlyfYzwwsAAIAQlO5UqSGYEfACAADAJxmOGV4CXgAAAISgDBatAQAAIJRlMMMLAACA8MjhLQzq3dYIeAEAAOCThkmHZ3iLDpVKzsHg3W2NgBcAAAA+77ZWLzEm6NMaCHgBAADgs4wjaQ079hdJsCLgBQAAgB82n2CGFwAAACG8cG1HEJcmI+AFAACAH0qTEfACAAAghDef2EHACwAAgFCUwQwvAAAAQllDR5UGAl4AAACE+AyvLUg3WyPgBQAAQLV3WysusUl+kG62RsALAAAAn8VFR0mDOrHm+5wg3XuCgBcAAADVkn5kljenOEKCEQEvAAAAqiX9SGkyZngBAAAQktLrHk5pWLE3QhZk75GS0uBavUbACwAAAJ9NXbpVpi7bZr5fsidSBk/4RU5+eoY5HiwIeAEAAOATDWpvenexHCgsKXN8W06BOR4sQS8BLwAAALymaQtjvlwurpIX7Mf09mBIbyDgBQAAgNcWZu+RrTkFbm/XMFdv13aBRsALAAAAr+3YX+DXdjWJgBcAAABeS0+K92u7mkTACwAAAK/1yGogmSnx4m6rCT2ut2u7QCPgBQAAgNeiIiNk9Hkdzfflg177db1d2wUaAS8AAAB8clbnTHll8LHSKKVs2oJe1+N6ezCIDnQHAAAAYF1ndc6Uvh0bybw1O+S7OQuk3yk9pVeb9KCY2bUj4AUAAEC1aHDbM6uB7F5hM1+DKdhVpDQAAAAgpBHwAgAAIKQR8AIAACCkEfACAAAgpBHwAgAAIKQR8AIAACCkEfACAAAgpBHwAgAAIKQR8AIAACCksdOaCzabzXzNzc2tlccrLi6W/Px883gxMTG18phWwdi4xri4x9i4xri4xri4x9i4xrgEz9jY4zR73FYZAl4X9u/fb742a9Ys0F0BAABAFXFbSkpKZU0kwuZJWBxmSktLpV27drJo0SKJiKi4F/Txxx8vP//8c5XHPb2u71A0uN60aZMkJyf77Xm462d17+Pp86/seGVj4/x9sIxNdcbF3W3ejovz9WAZF0/vw2vG+zbh/Jrxdlyq85qpqXGp6nn42p7XjPe3+/o3u/wxXjM/B91rRkNYDXYbN24skZGVZ+kyw+uCDlpsbKzbdwtRUVEuf5Dlj3t7Xb/35wvEXT+rex9Pn39lxysbC1ftAz021RkXd7d5Oy6urgd6XDy9D68Z79uE82vG23Hxx2vG3+NSWV+r057XjPe3+/o3u/wxXjPJQfmaqWpm145Fa27ccsstXt9W/ri31/3Nl/N7ch9Pn39lxysbi5oeF18eozrj4u42b8fF035UB68Z93jN1N5rxh///7o6xmvG9TFeM+7b8Zqx7mumPFIagoB+BKDvUHJycvz+btHqGBvXGBf3GBvXGBfXGBf3GBvXGBdrjg0zvEEgLi5ORo8ebb6iLMbGNcbFPcbGNcbFNcbFPcbGNcbFmmPDDC8AAABCGjO8AAAACGkEvAAAAAhpBLwAAAAIaQS8AAAACGkEvAAAAAhpBLwWlJ+fLy1atJARI0YEuitBY9++fXLcccdJ165dpXPnzvL6668HuktBQ7d4PP3006Vjx47SpUsXmTx5cqC7FDQuuugiqV+/vlxyySUSzr766itp3769tG3bVv773/8GujtBhddIRfyf4h5/i4I3fqEsmQWNGjVK1qxZY/arfvbZZwPdnaBQUlIihYWFkpiYKHl5eeY/ml9++UVSU1Ml3G3dulW2b99u/gPetm2bdO/eXf7880+pU6eOhLtZs2aZfdjffvtt+eijjyQcHTp0yAQuM2fONAXj9fXx008/8btzBK+Rivg/xT3+FgVv/MIMr8WsXr1aVq5cKWeffXaguxJUdJ9t/Q9G6X82+j6O93KHZWZmmj9MqlGjRpKWliZ79uwJdLeCgs5SJSUlSThbuHChdOrUSZo0aSJ169Y1/7d89913ge5W0OA1UhH/p7jH36LgjV8IeP1o9uzZct5550njxo0lIiJCPvvsswptxo8fLy1btpT4+Hjp2bOn+WPjDf0Y4MknnxSrqY2x0Y+SjjnmGGnatKncc8895j9hK6iNsbFbtGiRmYHQd9fBrjbHxcqqO05btmwxwa6dfr9582YJBbyGan5crPR/Sm2NjVX/FtX0uAQ6fiHg9SP9+EJf5PpDd2XSpEly1113mW33Fi9ebNr2799fduzY4Whjz/spf9E/Sp9//rm0a9fOXKympsdG1atXT3777TfJzs6W999/33zkZgW1MTZKZ2CGDBkir732mlhBbY2L1fljnEIVY1Oz42K1/1Nqa2ys+reoJsclKOIXzeGF/+nQfvrpp2WO9ejRw3bLLbc4rpeUlNgaN25se/LJJz0658iRI21Nmza1tWjRwpaammpLTk62jRkzxmY1NTE25d100022yZMn26ympsamoKDAdsopp9jeeecdmxXV5Gtm5syZtosvvtgWCnwZpx9//NF24YUXOm6/4447bO+9954t1FTnNRRKrxF/jYvV/0+prf93rPq3yN/jEgzxCzO8taSoqMh89NOnTx/HscjISHN93rx5Hp1DPwrQ1bHr1683yd7Dhg2Thx9+WKzOH2Oj76B1YYnKyckxH7/oqnOr88fY6P9PV199tZx55ply1VVXSSjwx7iEA0/GqUePHrJ06VKTxnDgwAH55ptvzMxMqOM15Pu4hOL/Kf4am1D9W1TdcQmG+IWAt5bs2rXL5DllZGSUOa7XdZVrOPPH2GzYsEFOOeUU8zGKfr3tttvk6KOPFqvzx9j8+OOP5uMmzbnSj/j18scff4iV+ev3Sf9DvvTSS2XKlCkm3y7UAh1Pxik6Olqee+45OeOMM8xr4+677w6LFeWevoZC/TXiy7iE4v8p/hqbUP1bFArxTXSgOwDf6Ltr/E1nqZYsWRLobgSlk08+WUpLSwPdjaD0/fffB7oLQeH88883F1TEa6Qi/k9xj79FwRu/MMNbS3SVppYrKZ+8rte1rEs4Y2zcY2xcY1w8wzi5x9i4xri4x9hYe1wIeGtJbGysKc49ffp0xzF9h6zXe/XqJeGMsXGPsXGNcfEM4+QeY+Ma4+IeY2PtcSGlwY90wYfuIGKnJUn0o40GDRpI8+bNTcmOoUOHmm0H9WOPsWPHmlIf11xzjYQ6xsY9xsY1xsUzjJN7jI1rjIt7jE0Ij0ut1oQIcVq6Roe0/GXo0KGONi+++KKtefPmttjYWFPGY/78+bZwwNi4x9i4xrh4hnFyj7FxjXFxj7EJ3XGJ0H8CHXQDAAAANYUcXgAAAIQ0Al4AAACENAJeAAAAhDQCXgAAAIQ0Al4AAACENAJeAAAAhDQCXgAAAIQ0Al4AAACENAJeAPDQrFmzJCIiQvbt2+fxfR555BHp2rVrjfRn9+7dkp6eLuvXr/e5f8HGl+dwwgknyMcff1yj/QJgbQS8AOBk3rx5EhUVJeecc44Eu3/+859ywQUXSMuWLSWcPfjggzJy5EgpLS0NdFcABCkCXgBw8sYbb8htt90ms2fPli1btkiwys/PN3297rrrJNydffbZsn//fvnmm28C3RUAQYqAFwCOOHDggEyaNEluuukmM8P71ltvVdpeb69Xr5589tln0rZtW4mPj5f+/fvLpk2bKrT93//+Z2ZiU1JS5IorrjABmt3UqVPl5JNPNudKTU2Vc889V9auXVvpY0+ZMkXi4uLMx/mV0Y/6O3XqZNrq4z/33HNlbt+6dat5rgkJCZKVlSXvv/++aTd27NhK0w569OghderUMX0+6aSTZMOGDY7bv/zySzn++OPNeKSlpclFF11UZhyOO+44SUpKkkaNGsmgQYNkx44dlT6HuXPnyimnnGL62KxZM7n99tslLy/PcbvOyA8YMEAmTpxY6XkAhC8CXgA44sMPP5SjjjpK2rdvL4MHD5YJEyaIzWarcqZVUwveeecd+fHHH03uqQa0zjR41aD4q6++MpcffvhBnnrqKcftGrzddddd8ssvv8j06dMlMjLSBImVfUQ/Z84c6d69e6V9W7RokVx22WWmP3/88YfJJ37ooYfKBPJDhgwxM9kaxGpw/Nprr1UagB46dEguvPBCOe200+T33383KSA33HCDybtVX3/9tem7BqC//vqreT4aHNsVFxfLY489Jr/99psZE80/vvrqq90+no7dWWedJRdffLF5PH1DogHwrbfeWqadPoaOCQC4ZAMAGCeeeKJt7Nix5vvi4mJbWlqabebMmY7b9Xv9b3Pv3r3m+ptvvmmuz58/39FmxYoV5tiCBQvM9dGjR9sSExNtubm5jjb33HOPrWfPnm77sXPnTnOOP/74w22bCy64wHbttdeWOVa+f4MGDbL17du3TBt97I4dO5bp688//+y4ffXq1ebYv//9b5ePu3v3bnP7rFmzXN7eq1cv25VXXmnzlD62nm///v0un8N1111nu+GGG8rcZ86cObbIyEjbwYMHHcc+//xzc6ykpMTjxwYQPpjhBQARWbVqlSxcuFAGDhxorkdHR8vll19u8mQro+3043s7nSHWj/lXrFjhOKYpAvoRvl1mZmaZWdTVq1ebx23VqpUkJyc7FqFt3LjR7eMePHjQpAxURvug6QbO9Lo+XklJiXnO2v9jjz3WcXubNm2kfv36bs/ZoEEDMyOrqRvnnXeejBs3zqRF2C1ZskR69+5d6ayz3q958+ZmTHSmuLLnqjPBOiNdt25dx0UfW2e/s7OzHe003UGPFRYWVjomAMITAS8AHFmsph/XN27c2ASBennllVfMx/w5OTnVOndMTEyZ6/rxv3O6ggaAe/bskddff10WLFhgLqqoqMjtOTU3du/evRIIb775pkllOPHEE02KQbt27WT+/PmOwNMdTd3QYFWD+vfee09+/vln+fTTTyt9rppXfeONN5pA2n7RIFiD9tatWzva6fhpTnFljw8gfBHwAgh7GuhqDq4u6CofWGkA/MEHH1R6X829tdNZU83j7dChg8e1dPU+WlpLZ0b1fp4Est26dZPly5dX2kbPpXnFzvS6Bqi60EtzlbX/mmtrt2bNGo8f//7775effvpJOnfubBa7qS5dupi8XVdWrlxpnq/mL+siNJ0Nr2rBms4+6/PUmefyl9jYWEe7pUuXmj4BgCsEvADCni4k0yBPS3xp8OZ80cVSlaU16OytljHTWVn9uF4/7tfKCc4LtSqj6QNamUEXi2mwOWPGDLOArSo6U7ps2bJKg9O7777bBJ+6SOzPP/+Ut99+W1566SUZMWKEuV0Dzj59+phFZ5rOoYGvfq+zpPZFaOVpGoEGujrDq5UZvvvuOzPbag/wR48ebd4g6FdNqdDFck8//bS5TdMYNEh98cUXZd26dfLFF1+YvlXmvvvuM0G1LlLTNyH6WJ9//nmFRWu6YK1fv35VjhuA8ETACyDsaUCrgZ+WDCtPA16dwdUKAa4kJiaaoEzLa2l+rOaY6sf8ntKKDFpOS4NlDbDvvPNOeeaZZ6q839FHH21mP7WyhDv22/X8eu6HH35YHn300TJVEXRmOyMjQ0499VRTXWHYsGEmt9ZdfrA+X52p1XHRmWINkG+55RaTdqBOP/10mTx5sglmdYe5M8880wTTqmHDhiYfV2/v2LGjmel99tlnK32eOmOsVS00YNdZYZ3F1eehM+92mzdvNkHxNddcU+W4AQhPEbpyLdCdAAAr0uBt+PDhAdvKV0uA3XPPPebjfA2c/eGvv/4ytW6///77ShefBRN9w6Ez3TpLDgCuRLs8CgAIerphhH7ErzOcGqT6QlModGGYzhhrtYV7773XVInQGV+rSE9P9ygNBED4IuAFAAvTGebq0I0gHnjgAZNTq6kMWnlBKyiUrywRzDRXGQAqQ0oDAAAAQhqL1gAAABDSCHgBAAAQ0gh4AQAAENIIeAEAABDSCHgBAAAQ0gh4AQAAENIIeAEAABDSCHgBAAAQ0gh4AQAAIKHs/wH3y+k7d/XsSAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Максимальный R²: 0.7321\n",
"Лучшее alpha: 494.1713361323828\n"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.linear_model import Lasso\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.pipeline import make_pipeline\n",
"from sklearn.model_selection import cross_val_score\n",
"import numpy as np\n",
"\n",
"# Сетка значений alpha\n",
"alphas = np.logspace(-4, 4, 50)\n",
"r2_scores = []\n",
"\n",
"for alpha in alphas:\n",
" lasso = make_pipeline(StandardScaler(), Lasso(alpha=alpha, random_state=42))\n",
" scores = cross_val_score(lasso, X_train, y_train, cv=5, scoring='r2')\n",
" r2_scores.append(np.mean(scores))\n",
"\n",
"# Построим график\n",
"plt.figure(figsize=(8,5))\n",
"plt.semilogx(alphas, r2_scores, marker='o')\n",
"plt.xlabel(\"Alpha (log scale)\")\n",
"plt.ylabel(\"Mean R² (5-fold CV)\")\n",
"plt.title(\"Зависимость R² от alpha в Lasso\")\n",
"plt.grid(True)\n",
"plt.show()\n",
"\n",
"max_idx = np.argmax(r2_scores)\n",
"max_r2 = r2_scores[max_idx]\n",
"best_alpha = alphas[max_idx]\n",
"\n",
"print(f\"Максимальный R²: {max_r2:.4f}\")\n",
"print(f\"Лучшее alpha: {best_alpha}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAHbCAYAAADYqBKxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYu5JREFUeJzt3Qd8VFX2wPGTHgIkoSf0JiUgXYqKBSmKfXUtiCC66KLYUFEsIHb/KguLrCgrdgVR7EgRQUE6CNJ7b4FACgkpJPP/nAuTnSQzmZm0ab/v5zMk896dN3duJuTMfeeeF2SxWCwCAAAA+KBgT3cAAAAAKCmCWQAAAPgsglkAAAD4LIJZAAAA+CyCWQAAAPgsglkAAAD4LIJZAAAA+CyCWQAAAPgsglkAAAD4LIJZAEC5ueyyy8ytpI9t27at+Is9e/ZIUFCQfPjhh07b3nXXXdK4ceMK6Rfg6whmAS82efJk6devn9SpU0fCwsIkLi5OLr30Uvn4448lLy/P091DCWmgokGN9RYRESEtWrSQ0aNHS2ZmZoG2Tz75pFx00UXmdsEFF8iSJUs81m/YD7htf5aVKlWSdu3ayfjx4/kdBSpIaEU9EQD3ffTRRxIfHy/PPfecREdHS3JysixbtswEQz///LN88cUXnu4iSkgD2P/+97/m+5SUFPnuu+/kxRdflJ07d8pnn32W3+6ee+6R119/3XyvAdIdd9whu3fv9li/UVT9+vXl1VdfNd8fP35cPv/8c3n00Ufl2LFj8vLLL+e3a9SokZw+fdp8MAVQdghmAS/2+++/F/nD99BDD0mNGjXk7bffNn9AORXpm0JDQ2XgwIH59++//3658MILzQeUcePGmdl4pTO2VhaLRYKDOaHmbWJiYgr8LP/5z39Kq1atZOLEifLCCy9ISEiI2a4zt5GRkR7sKeCf+F8R8GKOZnCsAaxtYKMze1dffbXUrVvXzPo1a9bMzPTl5uYWe1q0Zs2a5nEbNmwo0E73Pf/88wW2vfHGG2Z74RxIPTWubTXw0j/WOpv8t7/9zcwyFpcr+MADD5jtOtNspW10W3h4uJnZsrV06dL8fq9atarAvhkzZkjnzp3NaV59TRpcHDx4sMjYbdmyRW655RapVauWaduyZUt55plnzD59DbZjY++2cOHCcsnn1GNffPHFJmDdtWtXkf3689H+aaDrTHp6ujz22GPSoEED817Q1/jmm2+aY9s+X3E3Z3muH3zwgfTq1Utq165tniMhIUHeeecdp33T8dPjT58+XZ5++mmTOlO5cmW57rrrZP/+/XYfs2nTJrn88sslKipK6tWrJ//3f/9XYH92drZJ0dCfvwaWeryePXvKggULxBX6+2R93fo7pX269dZbZd++fVIS+jugKSFpaWmSmJiYv93R78G3335r3kv6OP36zTff2D1uUlKS3HnnneYsTWxsrAwePFjWrVtn95j6Pr/55pulevXq5rhdunSR77//vkSvB/B2zMwCPkDTC86cOWP+OK5evdoEJrfddps0bNgwv43+MatSpYqMGDHCfP3111/NH/jU1FQThNrSWSMN4DS40YBTA6T+/fsX+8db+2A9lWpLg+VrrrlG5s+fb/r08MMPm37OmzfPBGAaVNuzY8cOmTJlisPn09msTz/91JyutQ2g9A9z4bxSfe1DhgwxAYT28ejRozJhwgT5448/5M8//zR/+NVff/1lghz9kHDvvfeaIEZf/w8//GBOB2sA3rx58/zj6nO3bt3atLXS++VFgx1VrVq1Ats1uL3qqqtkzJgxcv311xd7DP2ZamCogZymKHTo0EHmzJkjTzzxhAnu//Wvf5l2n3zySf5jFi1aJO+9957Zpx8ElHVm2BENXNu0aWOeS2eZdQx1dlnzRPVDijM63hqEaU6wBnyaQtG7d29Zu3at+ZBhdfLkSbnyyivNz0Y/hHz11VfmMeeff74ZE6XvcU3ZuP3222Xo0KHm/ff++++bfPMVK1aYMXBG3xf6c9b+6/tW+3Po0CEzNiVhDVyt7z1H5s6dKzfddJP5MKDvXQ1Y9b2sqQu2tF/XXnuteT3Dhg0zv8P6AVYD2sI2btxocqw18H/qqadMcP/ll1/KDTfcIF9//bXceOONJXpNgNeyAPB6LVu21Cm1/NugQYMsOTk5BdpkZGQUedx9991niYqKsmRmZuZvu/TSS83N1tNPP22Om5iYmL9N748ZMyb//siRIy21a9e2dO7cucDjp06datqOGzeuyPPn5eWZr7t37zZtPvjgg/x9t9xyi6Vt27aWBg0aWAYPHpy/Xdto29tvv91y/vnn529PT0+3REdHWwYMGGD2r1y50mzPzs42/dJjnT59Or/9jz/+aNqNHj06f9sll1xiqVq1qmXv3r12+1lYo0aNCvTNlo5BmzZtLCWhx6xcubLl2LFj5rZjxw7Lm2++aQkKCjKvw7Y/O3fuNP2YNGmSS8f+9ttvzet+6aWXCmy/+eabzfH1uQqzjrn+nFxl7/3Wr18/S9OmTQtsK/x+W7BggXmuevXqWVJTU/O3f/nll2b7hAkTCjxWt3388cf527KysixxcXGWm266KX/bmTNnzHZbJ0+etNSpU8dy9913O30t9n7O+j7T3x1ntI+tWrXK/1lu2bLF8sQTT5h+X3311QXa2vs96NChgyU+Pt6SnJycv23u3LmmnfbL6uuvvzbbxo8fn78tNzfX0qtXryLHvOKKK8zvju3vvb6nLrzwQst5553n9DUBvoY0A8AH6IykznTqwiCdbdOvtrOFynY2S2emdCGKzjZlZGSYU462cnJyzH49ja+n7vW0pq7Ats7KFaYzepr/pwvRdNbXls706OMefPDBIo/TmSl7dHZZ0wJ0JspRDqieTtV+W9MJ9Hn0FPIVV1xRoJ3u15k9nRW0zUfU1Amdvfrpp5/MfX2tmoN89913F5jRLq6fzuistI6j3vRUtzs0FUBTHfSms8GPP/64mU3T2Tbb/ug46MyjzqxZy1zpIiJHZs2aZWa1NbfalqYd6GcUXThYFmzfb7qATcdAK23oLLLed2bQoEFStWrV/Pt6SlzTU7T/tvT9ZpuPquknXbt2LZCKoa9Xt1tnME+cOGHOZOip9TVr1rj0erKyssxr0PeS/q7pmY3C7zVH9H1q/Vnqe07PhOiMtbMSXIcPHzYz0Tq7qu9tqz59+piZWluzZ882ZxR05tlKf3cKz4Lra9e+6yy29f8BvemMr85Ub9++3W76DeDLSDMAfECPHj3yvx8wYIA0bdrUpAloYKsBkPXU4rPPPmv+kGnwY6twcKHlnfQPr9V5551n8vYcBXV6eltzce+77z5zmteWnqbXnEw91ewqPfWpgbamJwwfPtxuG+2fBqRTp041QYl+1T/6hYPfvXv3mq/ah8I0sFi8eLH53hr8lGWeqzWIUdovDUp1rPRn5IwG3npqXh04cMDkgWogZRskKk2VcIeOh/6sbANF2/QI63iVlvZLX6t+GNIPTIXfb7bBmT36nrOl7z0dP2uqhZWebi/8vtQ0DE0ZKVz546233jI/E/2wZtWkSROXXs+0adPMzUpTVqzVJpzRdBVNmdFAWn8fNIVCPzw5W+xl/VkUHgvr+9k2ENe2Guxr3rAt27QYa/qOfmjRD556s0ffZ5qCAPgLglnAB+kslgazy5cvN8Gs5rPqrJguDNHV05qnqn9I9Y+h5hcWrneps7D6h1/pH91///vfZsZP2+viF1ubN282M0yav1oWJYU0R/CXX34xQZAzOouqM3g666uzqhpclDSHsTxYgxilM186jjqTqh82unfvXuxjdTZRc0StdNZMg2/9wODtC3U0YNNZS+2v5lvrQjOdGdVZVc27Lcv6qtZKAIXZLmbT96YuItScUM0N1kVp+jid+bcuQnSmb9++5rHWDxdaDk0XnenMf+EPGIVpTqrtz1J/Jzt16mQWuOl7oiJZx15n+vU9ZU/hABjwdQSzgA+ynma2/qHXFeIaTM2cOVMuueSS/HaO6pHqzJbtH18NZHU2T9MZRo0aVaCt3tcFNLq62x4NnDWo1tkwZ8GuBiA6K6sLUJwFe0oX+GhQrgvLdKW/PlfhYFZrd6qtW7ea1fW2dJt1vwaYqnDVhtIoHMTobLPOeGnA7srrs6WzbrrgbOzYsaaWsLuPt9LXqx8W9BSz7eysNdXEOh6loTPKelpeg27blA1XqwcoPd1d+L2hs4r6QctderZAf776/redxdWZY3fG3/ZnqTOjWipNz1jowjJ36GvQ1Ih3333XBJWF01qsrD+LwmNhfe8Wbqvjq7PgtrOzOma2rO9z/V20fT2APyNnFvBihfMHrXQ2UP9oW4M3a1BrO1ulOZz/+c9/3AqONUCxpbOnmsP52muvOUxB0JXYmpOndW8Ls+2P0tO4enrYXlUEezR1QWdm9TE6S2uPpiDoTJxeLc22/5obqrPKmqqgNB1AA31NVyhctaFwP0s7K+ZoNtEZnYHWQEXHu6S0KoXm8hb+eeiMqf4MrRUASsPe+01TC/TDkKv0KnYacNsGpJpDWpL+2euPfsByZfbf3d8JV40cOdJ8wCuulJoG0PpBUVMkbFOBNGdXy5HZ0llWPZ5tBRB9v02aNKlAO/1d0A+nGkjreBZWuNwd4A+YmQW8mOZe6qlcncnUUkn6h0iDNJ2h0TQDLU+kdAZJZ1s1p1QX/mjQoqWXHAVpWrpKT80qDUT1D58GjprDaktnGHUxSnEzPBpsamCiJcG0bJDOTuriJp0d1EVZtqWk9Hi6gMVefqsjWitXT/8WLldlpTNQekpYyxlpqoXOollLc2kagG1pLz3lqzO8egpYF9BpPqXmaOoiMV2I465Tp06ZhTnWhTd6fO2PNYB2l14MQ1+HfgjRQLwkZcC0fJOeHtf3h7629u3bm3HXDyWPPPKIw1Jp7tBT8ppWoM+laRE6DhpkaSBlL4CyR+uf6s9CX6/+vLQUlp7+tl3g5Cp93+qsrP6e6NjrGQn9cKOLqLRvrtCcauvvhC6Q0g8Dmrbj6iKwwvS59YOFpsZo7qr+bO3RD3baZx0L/cCm7yNdbKllz2z7rikUuvBNF/LpbKz+v6Az49pe2X7Y1ABXj6f/P+h46mytjrEG95pCobVpAb/i6XIKABx75513LP3797fUrVvXEhoaaomNjTXlj2bNmlWk7R9//GHp3r27pVKlSqa9ltKaM2eOKduj5ZAKlzuy3vSYF110UZFj6j4t5bR69eoC2+2V9tIyTc8884ylSZMmlrCwMFM6SUtBaVkp25JE2reDBw8WWxbJWibKWnqrMEf7p0+fbunYsaMlIiLCUr16dcsdd9xhOXDgQJHHb9iwwXLjjTea1x0ZGWnKnj333HMlKs1lbxx//vlni6uluezRMQsJCXH4vK5IS0uzPProo+Z9oD8PLcf0xhtvOCxBVpLSXN9//72lXbt2ZgwbN25sef311/PLtNkex1Fpri+++MIyatQoU1ZN3xdaxqpwyTRH5c90bGzLVunreuWVV8w2/fnr+0BLsxVu54i2sf1Z1qxZ09K3b1/L0qVLnT62uBJtCxcuLFDizl5pLmvZrdatW5u+JyQkWGbOnGm371r6S0uGaXm5mJgYy1133WV+7/WY06ZNK/I+0hJ++ruo7wEthXbNNddYvvrqK6evCfA1QfqPpwNqAEBg0PxunTnW0my6kBGlozm9OiOtVTuslU2AQEPOLAAAPqBwfWHNjdaUBE2H0NQZIFCRMwsAgA/QBYIa0GrdaV2YpnnCWjP6lVdecVo+DPBnBLMAAPgArV6i9aF//PFHyczMNAvmdGbW0YVHgEBBziwAAAB8FjmzAAAA8FkEswAAAPBZAZczq1dMOXTokLnMo6MrGgEAAMBzNAtWrxKol1oPDi5+7jXgglkNZBs0aODpbgAAAMCJ/fv3S/369YttE3DBrM7IWgdHa/OVN72Wtl5KUi//qJe5xP8wNvYxLo4xNvYxLo4xNvYxLo4xNt4xLqmpqWby0Rq3FSfggllraoEGshUVzEZFRZnn4peiIMbGPsbFMcbGPsbFMcbGPsbFMcbGu8bFlZRQFoABAADAZxHMAgAAwGcRzAIAAMBnEcwCAADAZxHMAgAAwGcRzAIAAMBnEcwCAADAZxHMAgAAwGcRzAIAAMBnEcwCAADAZwXc5WwBAChruXkWWbH7hCSmZUrtqpHStUl1CQkOKpP25X3sVTuTXD424I0IZgEAKEVQOHvDYRn7wyY5nJKZvy0+JlLGXJsgV7aNL1X78jz2uqQgefWt3+VIapZLxwa8FWkGAACfDjiX7kyS79YeNF/1flm01aDw4td/ldunLJOHp601X/W+bi/cbtinawoEj+pISqbZXpr25XnsORuPytRtwQUC2eKOXZIxBCoKM7MAAK/hzilyd2YhNXh7+eetLs+GakBXOEyzBnrvDOxkHqN91ee3F87pNu217u+TEGdeg7P26plvNkilsBDJPpMnT81cX2zbJ79eL8dPZZtjWywWeX321mLbP//9Junduo4EBQXJS7O22Glpv98lnSUGKgrBLADA507XuxpwWk+nf7B0nUttXQk4R81cL+lZZ2TjodQis6CF2+v+i177VSxikdTTOXI6J6/YsUpKz5bBH6wUV6SczpFnv90grjqSmiktn/tZKoeHSWpmzrmw1XG/9WfWo1kNt8cbqGgEswCAcuNqgOpOsOTKjOjo7zZKw+qVJfnUaZm+K7jY4FTTCBLid0pGdp4kncqS4+nZxb6mkxk58tiMv9wKIt1RNyZSQkOCZN+J007btq0bLXExkWZ8Nbh2JjdPzgWyzr0xZ4tc0bqOtKxTRZ77bqPLM9BARSOYBQCU20xrWZyut86GnkjPltRMnRFNcTojmpiWJf3/vejcluIDrKwzefLn/hRxR8u4qhIdGSor95x02lYD9wsaV5etR9PksS/XOW3/1i0dzFfN03XmmasTzOyp5q+60n7i7R3NrLKmMDizZl+yuTljbyYXqEgEswCAMk8FcCVAferr9bI98ZRsOFh8cGqdDX36G9dPqavKESESGRosSenOZyLvuaixXNaqtuw5nm5mIZ15/to2Zox0UZgG5/Zep46ezpoO6tHYjGXr+Gh5c85Wp+31uNZxdbWtfnWlff/zz/6Mxv+y7dyMsf1Av3pUuNzds7FsP3pKVu4+IYec/HyUvndKU1IMKCmCWQAIcGWVCvDm39ubgO1g8mlZvP2Y0wA1+XSOvDV3m8v9TKgbLa3iqkpmdq7M2nDEafv/DrpAcnPPyMCpq5y27Z0QZ2YVL2xWU/6zcKdLQaQGZjpG+tp1u217a8im+60BnLvty/PYz/ZvJcOnrXXY9pW/tc3/2bs667tkZ5J0aVxd6sVWYrEYKhSluQDAD7laQsnVck76+Oe/d5w3qbfHZqwzp/aHfrxKPlq616V+alB4Xfu6LrV97uoEGXdLB5k4oJMJjBzN8el23a/H7tKomsSGW1xqaxsUWvcVbls4KNTATNMlNMC1pfftLYpyp315Hrtfmzpyd4s8qRMd4bStddbX2Zzq9JX7zWK3PuN+k3+6UVIMKC1mZgHAz5RlKsCIL9fJR0v2mNPNzhZGKc0jbVyzsjm9v8KFfNJHe7cwwdLKPSdcPqXuzixkXnCQ/K1xnnywLcSlGUvboLDwGMY5mFnU+7r4ydVT6u60L89jt69hkZF3XCJ/Hkgrtq0r4z2weyPZkXhKlu5KMqkj9rBYDOWFYBYAfIQrOYiuLLrq1ybOlIDSWVtnqQAZ2bmydNcJl/v44g1t5foO9UxfXcknLcnpencDTg3aJt7WvkidWUfBaUmCSN3uzuInd9p7w7FdHe8f1x2S4V/86fA4LBZDeSCYBQAfn229omVNl2daH/ziT1OUX6sCuOqObg2lRZ0qMub7TU7batCn3A1Q3Z0NdTfg1NPqV7Wr59aCJHeDSH/nynjnWly7IljhxWJAaRDMAoCPl7ga9/fz5XC6yMQFO53OtObkWiQn94wEBYnUrBIux9Kcpw5c066u6dvk33a5nApQEafry3uGE+6PofXDjDNhISzZQdkhmAUAHy9x9eiM9ef+O9/lUh9H9mspQy5qIuGhweWaClARp+vhXZyVCLN68qt1pt7tzZ3rm8vrKkp5oaQIZgGgGO78gS2rElfPXNNa6sVUkl3H02X57iSns60qPNgiDWtUkR3H0p227diwmlQKDzHfl3cqgCJADRzOPvTo/UY1omRvUoY88dVf8sNfh+XVv50v6w8kU8oLJUYwCyDglPXsqbtXuxpTTIkr9dKPm91+Tbc2zZNn7rxQLh+3yOtSARBYnL2nereuI/9dvFvGzdsmv287Jr3eXGiuwiYuXMoYsIdgFoDPBJzeNHtq+wfWlVSAR6avlea/7pDdx9MlPTvX6etvVquytK8fK6HBQfLl6gNO28eEu7/oyopUAJQ1Z++pf17aTPok1JEnZqxzeMlcSnnBVQSzgI9xJ3BzNwetPNuXRcD5zFUtK2z21FlwqpdWPZGeLYlpWfLXgWSnqQCZOXmy4VCquOqhK87LL3G1aMdxJ7OtEdIs+mx6AakA8BbO3lPNalWRx/q2lDv+u9xhG0p5wRUEs+VI/wgt331CVh8Pkhr6i9i8tkcCA289do2oUHFwUSKv7nd5H7tj/aoOj+tu4OZODlp5ti+rgPPBaetkSIsg6V9Os6caoGZk5cqf+50HpxrIant3/KNnEzmvdhV58mtdsFV2Ja6euaqV5O5dnb+dVAD4iuOnslxqRykvFIdgtpwU/OMdIh9vX+WRwMDbjx0bHiJhjY/KNR3q+1S/y/PYcdER0j/ufwGblCBwc6dtebcvy4BTQ7GZe4JlZJ5FgvXyqk6C05Ff/SWbD6fJqawzsiMxzaUAdcSMdeKq1vFVTSpATm6efL3moNP2V7SqY4LK8b9sL9O8Vq0zO6vQ1WOZaYUvcLWUl6vtEJiCLBYXKxz7idTUVImJiZGUlBSJjo4ul+dw9MfbOifiamBgr72/HVvDjiAJ8rl+l/exLWKRt2/rkB/kW6+m5CgYswZAi5/sZe672lYDHneO7Up7VbtqhEy/t4fk5OXJgCnL5Pgpx7VMYyqFyfBezU1AqJfDnOlCUKiXTM0+kyeZdhaNlJbOnNaoEi7LXLjq1RdDu5uA0dWrXVnH0PqzFwczrY4WvDia8c/JyZFZs2ZJ//79JSwsrMSv3R8xNt49Ls5+d6yTAdbfnUAaG2+TU8Hj4k68xsxsGXPlVKaeYjyZkS3BQUGSZ7HIaz9vddpeZ4zU67Nda2s9tivt9bKW6v9cbGs9tivtj507hfSGg7b659tyrq3mHlqP/eYcZ8f+S46mng2m3pq7zens3KHk0/nH1lkxZ+33ncgw30/8dUexbbW0zM5j6aYAvf7s3/1tV7HtH5/x19m8SYtFPlyyp/jXOHODrN6fYoL9g8kZxQaP1ryyu6auMK/RlbbXv71YqkSGSnJ6jkvtO784z/wxyczJdbqASX+Wl7+1UFyRcjpHXv7JvdX77ly9SoPNdvVjJDkjR6av3O+0/QvXtzVBoqv1VyvqalfW52G2Ff6kuN8dq+GXNydFBt4/Mztp0iR544035MiRI9K+fXuZOHGidO3a1W7byy67TH777bci2/WTwk8//eTxmdmlO5Pk9inLyvy4gK8JDwmSkOBgOZ3jfOV+p4axZjGIBpzzNh912v7l6xOkcmSYPDJ9nVfNnrqbklJWReKZSXKMsfGNcbH3u6OVPM7kWaRpzcoy4589pEaViIAcG2+Rw8ysY9OnT5cRI0bI5MmTpVu3bjJ+/Hjp16+fbN26VWrXrl2k/cyZMyU7+3+nLJOSkkwA/Pe//128gatJ6m3rRps/nPqH1ZUVztpeudo2LqaSHEk5XfbHrhct8TGV5LAe+6Dz9ufXO3vs9S60bVffeuxM+etAitP27evHmBnRtfudt+3QIFbqVaskh06eNot7nOnSKNZ8XbXXedtuTapLw+pRsv9Ehizb7fzU9MXNa5p+L9p+3GnbK1rXlpZ1qpqZ5W/XHnLa/o5uDczVdD5dts9p2+GXN5OWcdGy89gpM1vtzKt/ayudGlaX9QdT5HEX8ko/urub+erKh7sn+rVyOeCMCbfITZ3qmf9M9cyDN82eUuIKKBl7vzsNqleSW99dZi4ectcHK+WLe7tLlQiPhy3wQh5/V4wbN06GDh0qQ4YMMfc1qNUZ1qlTp8pTTz1VpH316gVrTU6bNk2ioqK8Jph1NUn9masTzB8xV2dytb1ytW25Hbu/e8d+ur/rxx51lXvHfuqq1i4f+8krW7l17Mf6tnL52I/0bpF/7GUutH/g8ubmqyvB7D8ubpof5GllDGeB2wvXn2/uz9+c6LTto31a5ufA6ul3Z+1v6dLQtG9eu4q8Ndf1ILK4S1uWJOD8W+M8064kNVUr4gIBBKhAydj73fnknq5y8+Sl5kP0vR+vkg+GXCARoWevXgd4RTCrM6yrV6+WUaNG5W8LDg6W3r17y9KlS106xvvvvy+33XabVK5c2e7+rKwsc7OdtrZOl+utrGlZJV2NfjQ1q9iakNpOn9+d9opjB8axNTSLiz5bpsv6PtUaq1qaynF5ppaSl3vGrbZ55zIAyqt9SY6tK/Mn3tZeXpq1RY6k/u93V8fuqb7niRxYmz8mxbXVclW6v/DvuW677LyesmrvSZPbq4vVujSqlr+Qyp4uDfUMw9mzDLZ99RbWfpfH/2m+jrHx7XFpEBsh79/ZSQZOXSlLdibJQ5+vkQm3ti/XHFpfGZuKllPB4+LO83g0Z/bQoUNSr149WbJkifTo0SN/+8iRI01e7PLljgspqxUrVpjUBG3nKMf2+eefl7FjxxbZ/vnnn5sZ3fKwLilIpm4LPnfP9hfu7FDf3SJP2tewlKg9xw7cY1sfo6WpkrP/1z423GJmK0vTtrzbu3tspTWId6YGSWqOSHSYSLNoizj6++VOWwC+Z1tKkEzeHCy5liC5sE6e3Nw4T3al8TvvzzIyMmTAgAEu5cz6dDB73333mRncv/76y2EbezOzDRo0kOPHj5dbaS41Z+PRIrNF8edmi/q1qVOq9v50bA1oxl5/vvRvV9en+l2exz5bZzZDHr+tt90ke00LsDeraI87bcu7vbvHdvRJfd68edKnTx8WZthgXBxjbPxnXH7ecEQe/vIvLQYjlcNDClRV0f83n+1v///kQBibilDR46LxWs2aNb0/mNU0A50d/eqrr+SGG27I3z548GBJTk6W7777zuFj09PTpW7duvLCCy/Iww8/7FV1Zm3/eC/dkShzFy2Xvj27cQUwO1cAO7ZpmVxzteOVkYF6BbA5s39mJa0drDK2j3FxjLHxr3F5euZ6+XxF0QWuzmo0B8LYlDeqGTgQHh4unTt3lvnz5+cHs3l5eeb+8OHDi33sjBkzzIzrwIEDxVtp8KIr3ZM2W8xXZ7NQ7iwccXeRiTce2/xibPa9fpf3scnTAgD7H/wXbE20u896hUBd3KmLNqlLG1isCXseo2W5pkyZIh999JFs3rxZhg0bZmZdrdUNBg0aVGCBmO3CLw2Aa9Rg1TAAAP5Oz2C5coEXbYfA4vHSXLfeeqscO3ZMRo8ebS6a0KFDB5k9e7bUqXM272Xfvn2mwoEtrUG7ePFimTt3rod6DQAAvLGOu6vt4D88HswqTSlwlFawcGHRS2K2bNlSvODCZQAAwMvquLvaDv7D42kGAAAAzuhCWr0Ii6NsWN0eb3MRFgQOglkAAOD1rFf9U/YCWoudq/4hMBDMAgAAn2C9JLVegrqw0OAgaRVXviU34Z28ImcWAADA1YBWy2/9rz53hExasEMW70iSF3/cJO/fdYGnu4gKRjALAAB8SuH63LWjI+XK8b/L/C2JMn/zUbmidemvBAbfQZoBAADwac1qVZG7L25ivn/hx02SmfO/S93C/xHMAgAAn/dgr/OkTnSE7E3KkP8u2uXp7qACEcwCAACfVyUiVJ7u39p8//aCHXIw+bSnu4QKQjALAAD8wnXt65o6s5k5efLyT5s83R1UEIJZAADgF4KCgmTsdW3MArFZ64/I4u3HPd0lVACCWQAA4Ddax0fLnd0bme/HfL9Bss/kebpLKGcEswAAwK882qeF1KgcLjuPpctHS/Z4ujsoZwSzAADAr8RUCpMnr2xlvh//yzY5nHxalu5Mku/WHjRfc/P04rfwF1w0AQAA+J2bO9eXz1bsk3X7k6XXWwvldM7/0g3iYyJlzLUJ5mpi8H3MzAIAAL8THBwkV7WJM9/bBrLqSEqmDPt0jczecNhDvUNZIpgFAAB+R1MJPlpqP1/WmmQw9odNpBz4AYJZAADgd1bsPiGHUzId7tcQVvdrO/g2glkAAOB3EtMyy7QdvBfBLAAA8Du1q0aWaTt4L4JZAADgd/Sytlq1IMjBft2u+7UdfBvBLAAA8Dt6SVstv6UcBbS6X9vBtxHMAgAAv6R1ZN8Z2EniYgqmElSJCDXbqTPrH7hoAgAA8FsasPZJiDNVC+ZuOiIf/LFHIkKDpVerOp7uGsoIM7MAAMCvaSpBj2Y15On+raV21QhJSs+WORuPeLpbKCMEswAAICCEhQTL7V0bmu8/WbbX091BGSGYBQAAAUODWZ2p1bSDrUfSPN0dlAGCWQAAEDB0MVif1mfzZT9ldtYvEMwCAICAcmePRubrzDUH5FTWGU93B6VEMAsAAALKhc1qSNNalSU9O1e++fOgp7uDUiKYBQAAASUoKEgGdjs7O/vp0r1isVg83SWUAsEsAAAIODd1ri+RYcGy9WiarNxz0tPdQSkQzAIAgIATUylMbuhQz3xPmS7fRjALAAAC0sDuZ1MNZm84LIlpmZ7uDkqIYBYAAASktvVipGPDWMnJtciXK/d7ujsoIYJZAAAQsO48Nzv7+fJ9ciY3z9PdQQkQzAIAgIDV//x4qRYVJodSMuXXLYme7g5KgGAWAAAErMiwELnlggbmexaC+SaCWQAAENDu6NpIgoJEFm0/LnuS0j3dHbiJYBYAAAS0hjWi5LIWtcz3X6w44OnuwE0EswAAIODd2ePsQrCv/zwo2bme7g3cEepWawAAAD90aYvaUr9aJTlw8rT8fCBIQv46LPGxlaVrk+oSEhzk6e6hGASzAAAg4GnA2qVRdTlw8qD8eihEfp2x3myPj4mUMdcmyJVt4z3dRThAmgEAAAh4ehWwb9ceLLL9SEqmDPt0jdkP70QwCwAAAlpunkXG/rDJ7j7Lua+6X9vB+xDMAgCAgLZi9wk5nJLpcL+GsLpf28H7EMwCAICAlpiWWabtULEIZgEAQECrXTWyTNuhYhHMAgCAgKblt7RqgaMCXLpd92s7eB+CWQAAIIFelkvLbylHAa3up96sdyKYBQAAAU/ryL4zsJPUiY4osD0qPMRsp86s9yKYBQAAOBfQLnzsEhmekCv39mxstlUKC5G+CXGe7hqKQTALAABwjqYSnBdjkYd7NZeqEaGSlJ4tf+5P9nS3UAyCWQAAgELCQ4Pl8la1zfdzNx3xdHdQDIJZAAAAO/ok1DFf5248KhYLV//yVgSzAAAAdlzWspaEhQTJ7uPpsvPYKU93B94azE6aNEkaN24skZGR0q1bN1mxYkWx7ZOTk+WBBx6Q+Ph4iYiIkBYtWsisWbMqrL8AACAwVI0Mkwub1TTfz9l41NPdgTcGs9OnT5cRI0bImDFjZM2aNdK+fXvp16+fJCYm2m2fnZ0tffr0kT179shXX30lW7dulSlTpki9evUqvO8AAMD/9W1zLtVgE8Gst/JoMDtu3DgZOnSoDBkyRBISEmTy5MkSFRUlU6dOtdtet584cUK+/fZbueiii8yM7qWXXmqCYAAAgLLWp/XZYHbd/mQ5mprp6e7AjlDxEJ1lXb16tYwaNSp/W3BwsPTu3VuWLl1q9zHff/+99OjRw6QZfPfdd1KrVi0ZMGCAPPnkkxISEmL3MVlZWeZmlZqaar7m5OSYW3mzPkdFPJevYWzsY1wcY2zsY1wcY2zsY1xcH5tqlUKkQ4MYWbs/RWavPyQDujaQQJRTwe8Zd54nyOKh5XmHDh0y6QFLliwxAarVyJEj5bfffpPly5cXeUyrVq1MisEdd9wh999/v+zYscN8feihh0yqgj3PP/+8jB07tsj2zz//3MwCAwAAFOeXg0Hyw74QaRWTJ8MS8jzdnYCQkZFhJixTUlIkOjraO2dmSyIvL09q164t7733npmJ7dy5sxw8eFDeeOMNh8GszvxqXq7tzGyDBg2kb9++TgenrD5ZzJs3z+T6hoWFlfvz+RLGxj7GxTHGxj7GxTHGxj7Gxb2xaXUsXX749x+y81SI9Ox1hVkYFmhyKvg9Yz2T7gqPBbM1a9Y0AenRowUTqvV+XJz9y8ZpBQMdQNuUgtatW8uRI0dM2kJ4eHiRx2jFA70VpsepyF/gin4+X8LY2Me4OMbY2Me4OMbY2Me4uDY2LevGStNalWXXsXRZvCtZrmtfVwJVWAW9Z9x5Do8tANPAU2dW58+fX2DmVe/bph3Y0kVfmlqg7ay2bdtmglx7gSwAAEBZ6JtwdqJt7kauBuZtPFrNQE//a2mtjz76SDZv3izDhg2T9PR0U91ADRo0qMACMd2v1QwefvhhE8T+9NNP8sorr5gFYQAAAOVdomvh1mOSdSbX092Bt+TM3nrrrXLs2DEZPXq0SRXo0KGDzJ49W+rUOfuG2bdvn6lwYKW5rnPmzJFHH31U2rVrZxaQaWCr1QwAAADKS4f6sVKraoQcS8uSpTuT5LKWtT3dJXjLArDhw4ebmz0LFy4ssk1TEJYtW1YBPQMAADgrODhI+iTUkc+X75N5m44SzHoRj1/OFgAAwBf0TTh75liD2bw8j1Q2hR0EswAAAC7o0ayGVIkIlcS0LFl3INnT3cE5BLMAAAAuiAgNkcta1jLfz91UsLQoPIdgFgAAwEWaN6so0eU9CGYBAABcdHmr2hIWEiQ7j6XLjsRTnu4OCGYBAABcFx0ZJt2b1shfCAbPI5gFAABwQ982Z68GNm8TqQbegGAWAADADX1an82b/XN/siSmZnq6OwGPYBYAAMANcTGR0r5BrFgsIr9sTvR0dwIewSwAAEAJL6Awl1QDjyOYBQAAcFO/NmeD2SU7kiQtM8fT3QloBLMAAABualarijSpWVmyc/NkyqJd8t3ag7J0Z5LkcpnbChda8U8JAADg24KCgqR57Sqy+3i6/Hv+jvzt8TGRMubaBLmybbxH+xdImJkFAABw0+wNh+3WmT2SkinDPl1j9sNLZ2Y3b94s06ZNk0WLFsnevXslIyNDatWqJR07dpR+/frJTTfdJBEREeXTWwAAAA/TVIKxP2yyu0+TDIJEzP4+CXESEqz34BUzs2vWrJHevXuboHXx4sXSrVs3eeSRR+TFF1+UgQMHisVikWeeeUbq1q0rr7/+umRlZZVrxwEAADxhxe4TcjjFcX1ZDWh1v7aDF83M6ozr448/Ll999ZXExsY6bLd06VKZMGGCvPXWW/L000+XVT8BAAC8QmJaZpm2QwUFs9u2bZOwsDCn7Xr06GFuOTmUqQAAAP6ndtXIMm2HCkoz0ED27bffluTkZJfbAwAA+JuuTaqbqgWOsmF1u+7XdvCyagbWnNgBAwbIr7/+Wn69AgAA8FK6qEvLb6nCAa31vu5n8ZcXBrNHjhyRyZMny+HDh6VPnz7SpEkTswBs//795ddDAAAAL6N1ZN8Z2EniYgqmEuh93U6dWS8NZitVqiSDBg2SBQsWyPbt2+XOO++U999/3wS1V155pcyYMYNcWQAAEBA0YF38ZC+ZOriLBJ2bhJ1+Xw8CWV+5aELTpk3lhRdekN27d8vPP/8sNWrUkLvuukvq1atXtj0EAADwUppK0Kt1HWlf/2ylJ8px+eAVwPRybqGhoear1pplZhYAAASaHs1qmK9Ldh73dFcCTomDWc2T1ZlZnaHV/NlDhw7JlClTTD4tAABAILnwXDC7bGeSmdyDl17ONjs7W2bOnClTp0411Qzi4+Nl8ODBcvfdd5ugFgAAIBB1aVRdwkKC5FBKpuxNypDGNSt7uksBw61gNi4uTtLT0+Xaa6+VH374Qfr16yfBwaXOVAAAAPBplcJDpGODarJizwlZuiuJYLYCuRWJPvvss3LgwAFzSdurrrqKQBYAAOCc7vl5s0me7kpAcSsaHTJkiEybNk1SU1OL7EtJSZGJEyfa3QcAABAoebNLyZv13mBWL2f7+++/S3R0dJF9MTExsmjRIhPQAgAABJqODWMlIjRYjp/Kkp3HTnm6OwHDrWD266+/ln/+858O9993330mBQEAACDQRISGSOdG1cz3pBp4aTC7c+dOOe+88xzu133aBgAAINBTDeCFwWxISIipJ+uI7mNRGAAACPSLJ2hFg7w88mYrgluRZ8eOHeXbb791uP+bb74xbQAAAAJRu/qxEhUeIskZObLlSJqnuxMQ3Apmhw8fLm+99ZZZCJabm5u/Xb/XhV//+te/5IEHHiiPfgIAAHi9sJBguaBx9fzZWXhZMHvTTTfJyJEj5aGHHpLq1aubWVi96fePPPKIjBgxQm6++eby6y0AAIDP5M0e93RXAoJbVwBTL7/8slx//fXy2WefyY4dO0wdtUsvvVQGDBggXbt2LZ9eAgAA+Fje7PJdJ+RMbp6EhrCeyKuCWaVBK4ErAABAUW3qxkjVyFBJyzwjGw+lSvsGsZ7ukl/jowIAAEAZCgkOkm5N/lfVAOWLYBYAAKC8SnRRb7bcEcwCAACU0yKwlXtOSE5unqe749cIZgEAAMpYyzpVpVpUmGRk58pfB5I93R2/RjALAABQxoKDg/JTDZbsINXAK6oZaD3ZoKAgl9quWbOmNH0CAADweT2a1pBZ64+YRWAPXnGep7vjt1wOZm+44Yb87zMzM+U///mPJCQkSI8ePcy2ZcuWycaNG+X+++8vn54CAAD4EOvM7Kq9JyUzJ1ciw0I83aXADmbHjBmT//0//vEPcxWwF198sUib/fv3l20PAQAAfFCzWlWkVtUIOZaWJX/uS84PbuEFObMzZsyQQYMGFdk+cOBA+frrr8uiXwAAAD5N0zM11UBRb9bLgtlKlSrJH3/8UWS7bouMjCyLfgEAAPhNia6lO497uit+q0SXs33kkUdk2LBhZqGX9bK2y5cvl6lTp8pzzz1X1n0EAADwSdbUgrX7kyUj+4xEhZco9EIxSjSiTz31lDRt2lQmTJggn376qdnWunVr+eCDD+SWW24pySEBAAD8TsPqUVIvtpIcTD4tq/aclEta1PJ0l/xOiT8eaNBK4AoAAFB83mz3pjXk6zUHTN4swWzZ46IJAAAAFZI3yyIwj87MVqtWzeWLJpw4caI0fQIAAPC7vNn1B1MkLTNHqkaGebpLgRnMjh8/vnx7AgAA4IfqxlaSRjWiZG9Shqzcc0J6tarj6S4FZjA7ePDg8u0JAACAH6caaDC7ZEcSway35Mzm5uaaCyS89NJL5vbNN9+YbSUxadIkady4salR261bN1mxYoXDth9++KFJd7C9UdsWAAB4M10Eprh4gpdUM9ixY4f0799fDh48KC1btjTbXn31VWnQoIH89NNP0qxZM5ePNX36dBkxYoRMnjzZBLKaztCvXz/ZunWr1K5d2+5joqOjzX4rV3N5AQAAPJk3u/FQqnyxYq80rlFFujapLiHBxDAemZl96KGHTMC6f/9+c+EEve3bt0+aNGli9rlj3LhxMnToUBkyZIgkJCSYoDYqKspcgMERDV7j4uLyb3XqMF0PAAC815q9J/MD11EzN8jtU5bJxa//KrM3HPZ01wJzZva3336TZcuWSfXq1fO31ahRQ1577TW56KKLXD5Odna2rF69WkaNGpW/LTg4WHr37i1Lly51+LhTp05Jo0aNJC8vTzp16iSvvPKKtGnTxm7brKwsc7NKTU01X3NycsytvFmfoyKey9cwNvYxLo4xNvYxLo4xNvYxLhU7NnM2HpUHp60TS6HtR1IyZdina2Tibe2lXxvvnpjLqeD3jDvPU6JgNiIiQtLS0uwGmeHh4S4f5/jx4ybPtvDMqt7fsmWL3cdoWoPO2rZr105SUlLkzTfflAsvvFA2btwo9evXL9Je0x/Gjh1bZPvcuXPNDHBFmTdvXoU9l69hbOxjXBxjbOxjXBxjbOxjXMp/bPIsImPXhJwLZAumFJzdZpFnZ66VnD254gsZB/Mq6D2TkZFRvsHsNddcI/fee6+8//770rVrV7Nt+fLl8s9//lOuu+46KU89evQwNysNZPVSuu+++668+OKLRdrrrK/m5NrOzGpub9++fU3ubUV8stAffJ8+fSQsjLpythgb+xgXxxgb+xgXxxgb+xiXihub5btPSPKyVcW0CJLkbJFaCd2lW5P/nfEO9PdM6rkz6eUWzP773/82pbo0qLS+oDNnzphAdsKECS4fp2bNmhISEiJHjx4tsF3vay6sK/T5O3bsaBalOZpF1pu9x1XkL3BFP58vYWzsY1wcY2zsY1wcY2zsY1zKf2ySMs643M4XfhZhFfSecec5gksSIcfGxsp3330n27Ztk6+++srctLqAlueKiYlx+ck1JaFz584yf/78/G2aB6v3bWdfi6NpCuvXr5f4+HiXnxcAAKAi1K4aWabtUMrL2R4+fNiUy+rVq5fMnDlTmjdvbm6loSkAOsvbpUsXk7KgpbnS09NNdQM1aNAgqVevnsl9VS+88IJ0797dPG9ycrK88cYbsnfvXvnHP/5Rqn4AAACUNS2/FR8TaRZ7FV4ApjRNNi4m0rRDOQezVapUkaSkJBPMLly4sMxWs916661y7NgxGT16tBw5ckQ6dOggs2fPzl8UpiW/tMKB1cmTJ00pL22rAbbO7C5ZssSU9QIAAPAmWo5rzLUJpmqBBq62Aa11vZfup95sBQSzWi7r8ssvN4ut1I033uiwcsGvv/7qVieGDx9ubvZo4GzrX//6l7kBAAD4givbxss7AzvJ2B82yeGUzPzt1auEy8s3tDX7UQHB7KeffiofffSR7Ny509SZ1bquFVnaCgAAwFdpwNonIU5W7D4hr8zaJOsPpsrQnk0IZCsymK1UqZIpvaVWrVolr7/+ulkIBgAAAOc0lUAva3tNu7ommF2zN9nTXQrcy9kuWLAgP5D9448/ClxhCwAAAI51aVzNfF2z76RYLPaWhaHcg1lbV111lRw8eLC0hwEAAAgIberGSHhIsBw/lS17k1y/0hXKKZjlEwUAAIDrIsNC5Pz6Z+vyr9570tPd8XmlDmYBAADgns6NzqYarCKY9Xww++677+bXhAUAAIDrwewagtmKq2bgyIABA0rfCwAAgADSqeHZYHZbYpqknM6RmEphnu5SYMzMJiYmFri/du1acynaiy66SG6++eYiFzgAAABAUbWqRkijGlGiS4/+3MfsbIUFs/Hx8fkBrV5CtmvXrrJ3714TzKampkqfPn3k999/L1WHAAAAAgGpBh5IM7CtXPD888/LnXfeKe+//37+tkceeUTGjh0r8+fPL6PuAQAA+G8wO3PNQRaBeWoB2IYNG2To0KEFtun9v/76q7R9AgAA8HtdGlU3X9fuT5YzuXme7k7gBLNpaWkmpSAyMlIiIiIK7NNtGRkU/wUAAHDmvNpVpGpkqGRk58qWI2me7k7gBLMtWrSQatWqyZ49e2TVqlUF9m3cuFHq1q1blv0DAADwS8HBQflVDbh4QgXlzC5YsKDIgjBbu3fvlnvvvbcU3QEAAAisvNnfth0zebODL2zs6e74fzB76aWXFrv/4YcfLm1/AAAAAkYXKhpUXJqBbSUDAAAAlF77BrESHCRyMPm0HE457enu+Hcw26ZNG5k2bZpkZ2cX22779u0ybNgwee2118qifwAAAH6rckSotI6PNt+TN1vOaQYTJ06UJ598Uu6//35zcYQuXbqYxV5aweDkyZOyadMmWbx4sVkENnz4cBPQAgAAwHmqwcZDqbJqz0m5ph0L6cstmL3iiitM9QINWKdPny6fffaZufrX6dOnpWbNmtKxY0cZNGiQ3HHHHabaAQAAAJzr1KiafLR0r6zhsrblvwBMXXzxxeYGAACA0uvS+OzFE3R2NiP7jESFux2eBbQSXwEMAAAApVc3JlLioiMlN88i6/aneLo7PodgFgAAwIOCgoKkc+NzJbpINXAbwSwAAICHdT53JbBVe054uis+h2AWAADAw7rkz8wmS14etf3dQTALAADgYVprNjIsWFJO58jOY6c83R3/DWa1FNe7776bf+GESZMmlVe/AAAAAkZYSLC0rx9rvufiCeUYzGoNWa01e8MNN5iAVmvNAgAAoOxSDVYRzLrFrUJmZ86ckSlTpsisWbPkgQcecO+ZAAAA4FDnRufyZglmy29mNjr67LWD+/fvL40aNZJ169a592wAAACwq9O5iga7jqdL0qksT3fHP2dmhw8fbmZnQ0ND5ZlnnpEqVaqUX88AAAACSGxUuDSvXUV2JJ4yVQ36JNTxdJf8b2b2uuuuM4GstcDvI488UqSN5tQCAADAfV3OpRqs2ku92XItzXXq1Ck5ffp0gW1r166Va6+9Vrp161aSQwIAAAS8TuTNlm8wu3//funRo4fExMSY24gRIyQjI0MGDRpkgtjKlSvLkiVL3O8FAAAA8heBrTuQItln8jzdHf/LmX3iiSckMzNTJkyYIDNnzjRfFy1aZALZnTt3Sv369cuvpwAAAH6uac3KUi0qTE5m5MiGQyn5i8JQRsHs77//boLY7t27yy233CJxcXGm9qy93FkAAAC4R9ck6ezsL5sTTaoBwWwZpxkcPXpUmjRpYr6vXbu2REVFyVVXXeXOIQAAAFCMzo2qm6+r9pA3Wy4LwIKDgwt8Hx4e7u4hAAAA4CRvdvW+k2KxWDzdHf9KM9ABbdGihZkCt1Y16NixY4EAV504QTkJAACAkmhXP0bCQoLkWFqW7D9xWhrWiPJ0l/wnmP3ggw/KrycAAACQyLAQaVM3RtbuT5bV+04QzJZlMDt48GB3mgMAAKCEF0/QYPanvw5LcFCQ1K4aKV2bVJeQ4LNnx1HCYBYAAADlzxqzalUDvan4mEgZc22CXNk23rOd84crgAEAAKB8zN5wWN5btLvI9iMpmTLs0zVmP/6HYBYAAMBL5OZZZOwPm+zus9Y10P3aDmcRzAIAAHiJFbtPyOGUTIf7NYTV/doOZxHMAgAAeInEtMwybRcISrQALDc3Vz788EOZP3++JCYmSl5eXoH9v/76a1n1DwAAIGBo1YKybBcIShTMPvzwwyaYvfrqq6Vt27b5F1EAAABAyWn5La1aoIu97GXFasQVF3O2TBdKEcxOmzZNvvzyS+nfv39JHg4AAAA7tI6slt/SqgUauNoGtNapQ91PvdlS5syGh4dL8+bNS/JQAAAAFEPryL4zsJOZgbWl93U7dWbLIJh97LHHZMKECWKxUBYCAACgrGnAuvjJXvJ43xbmft2YSHOfQLaM0gwWL14sCxYskJ9//lnatGkjYWFhBfbPnDmzJIcFAADAOZpKcHvXhvLm3G1yKCVT0jJzJDYq3NPd8o9gNjY2Vm688cay7w0AAADy1agSIY1rRMmepAz5c3+yXN6ytqe75B/B7AcffFD2PQEAAEARnRpWOxvM7j1JMGsHF00AAADwYh0bVTNf1+xL9nRX/CuY/eqrr+SWW26R7t27S6dOnQrc3DVp0iRp3LixREZGSrdu3WTFihUulwjTGrc33HBDCV4BAACA9+vUMNZ8Xbs/WXLzWHxfJsHsv//9bxkyZIjUqVNH/vzzT+natavUqFFDdu3aJVdddZVbx5o+fbqMGDFCxowZI2vWrJH27dtLv379zJXFirNnzx55/PHHpWfPniV5CQAAAD6hZZ2qEhUeIqeyzsj2xDRPd8c/gtn//Oc/8t5778nEiRNNzdmRI0fKvHnz5KGHHpKUlBS3jjVu3DgZOnSoCY4TEhJk8uTJEhUVJVOnTi32crp33HGHjB07Vpo2bVqSlwAAAOATQkOCpX39s7Oza/aSalAmC8D27dsnF154ofm+UqVKkpZ29lPCnXfeadIO3n77bZeOk52dLatXr5ZRo0blbwsODpbevXvL0qVLHT7uhRdekNq1a8s999wjixYtKvY5srKyzM0qNTXVfM3JyTG38mZ9jop4Ll/D2NjHuDjG2NjHuDjG2NjHuPje2HSoHy1LdyXJqj1J8vdO8X4/LjluPE+Jgtm4uDg5ceKENGrUSBo2bCjLli0z6QG7d+9260IKx48fN7Osmq5gS+9v2bLFYY3b999/X9auXevSc7z66qtmBrewuXPnmhngiqIz17CPsbGPcXGMsbGPcXGMsbGPcfGdsTlzUi9fGyKLNx+UWbP2+f24ZGRklG8w26tXL/n++++lY8eOJj3g0UcfNQvCVq1aJX/729+kvOgMsM7+TpkyRWrWrOnSY3TWV3NybWdmGzRoIH379pXo6GipiE8W+oPv06dPkYtLBDrGxj7GxTHGxj7GxTHGxj7GxffGpnt6tkx5baEkZgbJhZf1kdioML8el9RzZ9LLLZjVfNm8vDzz/QMPPGAWfy1ZskSuu+46ue+++1w+jgakISEhcvTo0QLb9b7O/ha2c+dOs/Dr2muvzd9m7UdoaKhs3bpVmjVrVuAxERER5laY/iAq8k1a0c/nSxgb+xgXxxgb+xgXxxgb+xgX3xmbOrFh0qRmZdl9PF02HD4ll7eq7dfjEubGc5QomNW8Vr1Z3XbbbebmLl081rlzZ5k/f35+eS0NTvX+8OHDi7Rv1aqVrF+/vsC2Z5991szYTpgwwcy4AgAA+KOODWNNMLtm30mPBbN+VWdWF14NHDhQevToIQcPHjTbPvnkE5PT6g5NAdC0gY8++kg2b94sw4YNk/T0dJO+oAYNGpS/QEzr0LZt27bATS+tW7VqVfO9BscAAAD+eiUwpcEsShnMfv3116YWrFYy0Dqz1moBWpbrlVdecetYt956q7z55psyevRo6dChg1nYNXv27PxFYVo54fDhwyXpJgAAgN8Fs2v3cfGEUqcZvPTSS6YerM6a6lW4rC666CKzz12aUmAvrUAtXLiw2Md++OGHbj8fAACAr2kZV1Uqh4dIenaubDuaJq3jy38hu9/OzOpCq0suuaTI9piYGElOppgvAABAWQsJDpL2Dc5dPIFUg9IFs1ppYMeOHUW2a74sV+QCAAAo57xZrgRWumBWLz/78MMPy/LlyyUoKEgOHTokn332mTz++ONmARcAAADKXqdGZ2dm/2RmtnQ5s0899ZQpoXXFFVeYKzRoyoHWctVg9sEHHyzJIQEAAOBExwZnZ2Z3HU+Xk+nZUq0ylZxKNDOrs7HPPPOMuaTthg0bzOVsjx07Ji+++GLZ9xAAAACGBq9Na1Y23/+5n9nZEs/MWmld14SEhLL56QAAAMCpjg2rmZnZP/clS69WZ0uZBjK3gtm7777bpXZTp04taX8AAADgJG/26zUHqGhQkmBWa7o2atRIOnbsKBYLxXoBAAA8ffGEkOAgCWRuBbNaqeCLL76Q3bt3m8vN6uVsq1evXn69AwAAQAEt6lSVKhGhcirrDBdPcHcB2KRJk8ylZUeOHCk//PCDNGjQQG655RaZM2cOM7UAAAAVdvGEGPP9GlIN3K9moCW4br/9dpk3b55s2rRJ2rRpI/fff780btxYTp06VT69BAAAQD4unlDK0lz5Dw4ONmW6dFY2Nze3NIcCAACAm8Hsn8zMuh/MZmVlmbzZPn36SIsWLWT9+vXy9ttvy759+6RKlSrl00sAAADk69gwtsDFEwKZWwvANJ1g2rRpJldWy3RpUFuzZs3y6x0AAACKiI0Kl6a1KsuuY+nm4gmBXG/WrWB28uTJ0rBhQ2natKn89ttv5mbPzJkzy6p/AAAAcJBqsOtYusmbJZh10aBBg0yOLAAAADwfzH61mosnuH3RBAAAAHjHlcDUuv2BffGEUlUzAAAAgGecV/vsxRPSs3Nl65E0CVQEswAAAD6IiyecRTALAADg6xdP2EcwCwAAAJ+9eEKyBCqCWQAAAB+/eMLu4+lyIkAvnkAwCwAA4OMXTwjkS9sSzAIAAPiwTgGeN0swCwAA4A/B7N7AzJslmAUAAPCHiyccSJYzuXkSaAhmAQAAfPziCZXDQyQjO1fe/X2XLN2ZZK4IFijcupwtAAAAvMu8TUckJ/ds8PrGnK3ma3xMpIy5NkGubBsv/o6ZWQAAAB81e8NhGfbpGskulF5wJCXTbNf9/o5gFgAAwAdpKsHYHzaJvYQC6zbd7+8pBwSzAAAAPmjF7hNyOCXT4X4NYXW/tvNnBLMAAAA+KDHNcSBbkna+imAWAADAB9WuGlmm7XwVwSwAAIAP6tqkuqlaEORgv27X/drOnxHMAgAA+KCQ4CBTfksVDmit93W/tvNnBLMAAAA+6sq28fLOwE4SF1MwlaB65XCzPRDqzHLRBAAAAB92Zdt46ZMQZ6oW/N/sLfLn/mS5s0ejgAhkFTOzAAAAPi4kOEh6NKshN3aqZ+6v3ntSAgXBLAAAgJ/o0ujsYq81e0/KmUJXBfNXBLMAAAB+omVcVakaESrp2bmy5UiaBAKCWQAAAD9KN+jUqJr5fuUe/77ylxXBLAAAgB/peq6u7Ko9gZE3SzALAADgR7rYzMxaLBbxdwSzAAAAfqR9g1gJCwmSxLQs2X/itPg7glkAAAA/EhkWIu3qx5rvVwRA3izBLAAAgJ/p0vhsqsEqglkAAAD4mgvO1ZsNhIoGBLMAAAB+pvO5RWA7j6VL0qks8WcEswAAAH6mWuVwaVGnivl+lZ9f2pZgFgAAwA91aWytN+vfqQYEswAAAH7ognOLwFb6+cUTCGYBAAD80AXnZmY3HEyRjOwz4q8IZgEAAPxQvdhKEh8TKWfyLLJ2f7L4K4JZAAAAPxQUFGSTN+u/qQYEswAAAH6fN3tC/JVXBLOTJk2Sxo0bS2RkpHTr1k1WrFjhsO3MmTOlS5cuEhsbK5UrV5YOHTrIJ598UqH9BQAA8KW82TV7T8qZ3DzxRx4PZqdPny4jRoyQMWPGyJo1a6R9+/bSr18/SUxMtNu+evXq8swzz8jSpUvlr7/+kiFDhpjbnDlzKrzvAAAA3qxFnapSNTJU0rNzZcuRNPFHHg9mx40bJ0OHDjUBaUJCgkyePFmioqJk6tSpdttfdtllcuONN0rr1q2lWbNm8vDDD0u7du1k8eLFFd53AAAAbxYSHJR/NTB/TTUI9eSTZ2dny+rVq2XUqFH524KDg6V3795m5tUZi8Uiv/76q2zdulVef/11u22ysrLMzSo1NdV8zcnJMbfyZn2OinguX8PY2Me4OMbY2Me4OMbY2Me4BNbYdG4QIwu3HpPlu5JkYNf6PjEu7jxPkEUjQg85dOiQ1KtXT5YsWSI9evTI3z5y5Ej57bffZPny5XYfl5KSYh6nQWpISIj85z//kbvvvttu2+eff17Gjh1bZPvnn39uZoABAAD82c5UkX9vDJXoMIu80DlXgoLE62VkZMiAAQNMzBcdHe29M7MlVbVqVVm7dq2cOnVK5s+fb3JumzZtalIQCtNZX91vOzPboEED6du3r9PBKatPFvPmzZM+ffpIWFhYuT+fL2Fs7GNcHGNs7GNcHGNs7GNcAmtssnJy5Z0tv0pqjkjbHpdJo+pRXj8u1jPprvBoMFuzZk0zs3r06NEC2/V+XFycw8dpKkLz5s3N91rNYPPmzfLqq6/aDWYjIiLMrTD9QVTkm7Sin8+XMDb2MS6OMTb2MS6OMTb2MS6BMTZhYWHSrn6srN57UtYeSJPmdWK8flzceQ6PLgALDw+Xzp07m9lVq7y8PHPfNu3AGX2MbV4sAAAAipboWrnb/xaBeTzNQFMABg8ebGrHdu3aVcaPHy/p6emmuoEaNGiQyY/VmVelX7WtVjLQAHbWrFmmzuw777zj4VcCAADgvRdPmPybyMq9BLNl7tZbb5Vjx47J6NGj5ciRIyZtYPbs2VKnTh2zf9++fSatwEoD3fvvv18OHDgglSpVklatWsmnn35qjgMAAICirOW5dh1Ll6RTWVKjStEUTF/l8WBWDR8+3NzsWbhwYYH7L730krkBAADANbFR4dKyTlXZejRNVu45KVe2dbw2ydd4/KIJAAAAKH9dGp+dnV3lZxdPIJgFAAAIpEVge0+KPyGYBQAACKCZ2Y0HUyQj+4z4C4JZAACAAFC/WpTUjYmUM3kWWbsvWfwFwSwAAECA6GJNNdjjP6kGBLMAAAABVG9WrfKjerMEswAAAAHigiZnZ2bX7D0pZ3LzxB8QzAIAAASIFrWrStXIUEnPzpXNh9PEHxDMAgAABIjg4CDpcu5qYCv9pN4swSwAAEAALgKbs/GwfLf2oCzdmSS5eRbxVV5xOVsAAABUDIvlbOC6fPdJc1PxMZEy5toEubJtvPgaZmYBAAACxOwNh+WtuduKbD+SkinDPl1j9vsaglkAAIAAkJtnkbE/bBJ7CQXWbbrf11IOCGYBAAACwIrdJ+RwSqbD/RrC6n5t50sIZgEAAAJAYlpmmbbzFgSzAAAAAaB21cgybectCGYBAAACQNcm1U3VgiAH+3W77td2voRgFgAAIACEBAeZ8luqcEBrva/7tZ0vIZgFAAAIEFe2jZd3BnaSuJiCqQR6X7f7Yp1ZLpoAAAAQQK5sGy99EuJk2a4k+cdHq+R0Tq5MuK2jz6UXWDEzCwAAEGBCgoPkouY15fJWtcx9DWx9FcEsAABAgLq4+dlgdvH24+KrCGYBAAAC1MXNa5qva/adlFNZZ8QXEcwCAAAEqIY1oqRh9Sg5k2eRFbt9M9WAYBYAACCAXXRudnaRj6YaEMwCAAAEsJ7n1fTpvFmCWQAAgAB2YbMaEhQksj3xlBxNzRRfQzALAAAQwGKjwuX8ejE+OztLMAsAABDgLj6XN/vHDoJZAAAA+Ggwu3jHcbFYLOJLCGYBAAACXOfG1SQyLFgS07Jk29FT4ksIZgEAAAJcRGiIdG1SI3921pcQzAIAAEAubn4umN1+THwJwSwAAADk4ua1zNflu09I9pk88RUEswAAAJBWcVWlZpVwycjOlT/3nRRfQTALAAAACQ4Okgub/a+qga8gmAUAAIBxsfXStgSzAAAA8NV6s+v2J0vK6RzxBQSzAAAAMOrGVpKmtSpLnkVk6c4k8QUEswAAAMjX08cubUswCwAAgHwX2Vza1hcQzAIAACBf92Y1JCQ4SHYfT5cDJzPE2xHMAgAAIF90ZJh0aBDrM6kGBLMAAACwm2qwaDvBLAAAAHxMz3P1ZpfsTJI8LW3gxQhmAQAAUICmGVQOD5ET6dmy6XCqeDOCWQAAABQQFhIs3ZvW8ImqBgSzAAAAcHhpW29fBEYwCwAAAIeXtl2x+4Rk5eSKtyKYBQAAQBHNa1eROtERknUmT1bvSxZvRTALAACAIoKCguTi5rXM93/sTBJvRTALAAAAuy4+7+wiMIJZAAAA+OzFEzYeSpM/jgTJ8t0nJNfL6s6GeroDAAAA8E5r9p6U0OAgOZNnkS93h8iXu1dJfEykjLk2Qa5sGy/egJlZAAAAFDF7w2EZ9ukaE8jaOpKSabbrfm/gFcHspEmTpHHjxhIZGSndunWTFStWOGw7ZcoU6dmzp1SrVs3cevfuXWx7AAAAuEdTCcb+sEnsJRRYt+l+b0g58HgwO336dBkxYoSMGTNG1qxZI+3bt5d+/fpJYmKi3fYLFy6U22+/XRYsWCBLly6VBg0aSN++feXgwYMV3ncAAAB/tGL3CTmckulwv4awul/bSaAHs+PGjZOhQ4fKkCFDJCEhQSZPnixRUVEydepUu+0/++wzuf/++6VDhw7SqlUr+e9//yt5eXkyf/78Cu87AACAP0pMyyzTdn67ACw7O1tWr14to0aNyt8WHBxsUgd01tUVGRkZkpOTI9WrV7e7Pysry9ysUlNTzVd9jN7Km/U5KuK5fA1jYx/j4hhjYx/j4hhjYx/j4hhjc1aNqFCX25XHWLlzzCCLxeKxZIdDhw5JvXr1ZMmSJdKjR4/87SNHjpTffvtNli9f7vQYOks7Z84c2bhxo8m5Lez555+XsWPHFtn++eefmxlgAAAAFKSpsGPXhEhytt4LkqIsEhsuMqZTrgTb211KOlk5YMAASUlJkejoaP8tzfXaa6/JtGnTTB6tvUBW6ayv5uTazsxa82ydDU5ZfbKYN2+e9OnTR8LCwsr9+XwJY2Mf4+IYY2Mf4+IYY2Mf4+IYY/M/YY2PyoPT1pnvbWc+z8auQfLS39pLvzZ1pDxYz6S7wqPBbM2aNSUkJESOHj1aYLvej4uLK/axb775pglmf/nlF2nXrp3DdhEREeZWmL5BK/JNWtHP50sYG/sYF8cYG/sYF8cYG/sYF8cYG5FrOtSX0NAQU7XAdjFYXAXUmXVn7D0azIaHh0vnzp3N4q0bbrjBbLMu5ho+fLjDx/3f//2fvPzyyya9oEuXLhXYYwAAgMBxZdt46ZMQJ0t3JMrcRculb89u0qN5bQkpj9yCEvJ4moGmAAwePNgEpV27dpXx48dLenq6qW6gBg0aZPJqX331VXP/9ddfl9GjR5ucV61Ne+TIEbO9SpUq5gYAAICyo4FrtybVJWmzxXz1pkDWK4LZW2+9VY4dO2YCVA1MteTW7NmzpU6dszkY+/btMxUOrN555x1TBeHmm28ucBytU6uLvQAAABA4PB7MKk0pcJRWoIu7bO3Zs6eCegUAAABv5/GLJgAAAAAlRTALAAAAn0UwCwAAAJ9FMAsAAACfRTALAAAAn0UwCwAAAJ9FMAsAAACf5RV1ZiuSxWIxX1NTUyvk+XJyciQjI8M8X6Bf47kwxsY+xsUxxsY+xsUxxsY+xsUxxsY7xsUap1njtuIEXDCblpZmvjZo0MDTXQEAAICTuC0mJqa4JhJkcSXk9SN5eXnSokULWb16tQQFFb228AUXXCArV650aXvhbbb3rd/rJwsNnPfv3y/R0dFl+loc9bU07Ytr48oY2Nvm6H55jY274+LKY9wdF3vbnY0V7xnfec+Ux7jY2+5r4+LqY3jPuN+G94zrf5tL8zdbecvYBPrvksViMYFs3bp1JTi4+KzYgJuZ1QEJDw93GOWHhITY/SHZ2154m+39wvv0+7IOTBz1tTTti2vjyhjY2+bsflmPjbvj4spj3B0Xe9udjRXvGd95z5THuNjb7mvj4upjeM+434b3jOt/m8vib7Y3jA2/S+J0RjagF4A98MADbu+zt73wNtv7xT1HWXH3OVxp7+7YuDsurvajNEpyfGePKYv3jLOx4j3j+n1/HBd7231tXFx9DO8Z99vwnnmg1Nv5my1+8btkT8ClGVQ0nZbXTxYpKSllPsvm6xgb+xgXxxgb+xgXxxgb+xgXxxgb3xuXgJyZrUgREREyZswY8xUFMTb2MS6OMTb2MS6OMTb2MS6OMTa+Ny7MzAIAAMBnMTMLAAAAn0UwCwAAAJ9FMAsAAACfRTALAAAAn0UwCwAAAJ9FMOuFMjIypFGjRvL44497uiteITk5Wbp06SIdOnSQtm3bypQpUzzdJa+hlxW87LLLJCEhQdq1ayczZszwdJe8xo033ijVqlWTm2++WQLdjz/+KC1btpTzzjtP/vvf/3q6O16D94h9/L9iH3+LvDd2oTSXF3rmmWdkx44d5hrIb775pgS63NxcycrKkqioKElPTzf/iaxatUpq1Kghge7w4cNy9OhR85/rkSNHpHPnzrJt2zapXLmyBLqFCxea63p/9NFH8tVXX0mgOnPmjAlKFixYYAqe63tkyZIl/P7wHnGI/1fs42+R98YuzMx6me3bt8uWLVvkqquu8nRXvIZet1n/81D6H4l+/uIz2Fnx8fHmD46Ki4uTmjVryokTJzzdLa+gM0tVq1aVQLdixQpp06aN1KtXT6pUqWL+b5k7d66nu+UVeI/Yx/8r9vG3yHtjF4JZN/z+++9y7bXXSt26dSUoKEi+/fbbIm0mTZokjRs3lsjISOnWrZv5Q+IOnZ5/9dVXxZdUxLjo6Z327dtL/fr15YknnjD/ufqCihgbq9WrV5uZA/1U7O0qclx8XWnH6tChQyaQtdLvDx48KL6O91DFjI0v/b9SEePiq3+LyntcPB27EMy6QU8r6JtYf6j2TJ8+XUaMGGEu97ZmzRrTtl+/fpKYmJjfxpprU/imf3C+++47adGihbn5kvIeFxUbGyvr1q2T3bt3y+eff25OgfmCihgbpbMmgwYNkvfee098QUWNiz8oi7HyR4xL+Y+Nr/2/UhHj4qt/i8pzXLwidtGcWbhPh+6bb74psK1r166WBx54IP9+bm6upW7dupZXX33VpWM+9dRTlvr161saNWpkqVGjhiU6OtoyduxYS6CPS2HDhg2zzJgxw+JrymtsMjMzLT179rR8/PHHFl9Unu+ZBQsWWG666SaLvyjJWP3xxx+WG264IX//ww8/bPnss88s/qQ07yF/e4+U1dj4+v8rFfH/jq/+LSrrcfGG2IWZ2TKSnZ1tTsf07t07f1twcLC5v3TpUpeOoVP0uop0z549Jnl66NChMnr0aAn0cdFPvrpIQ6WkpJhTIroy29eVxdjo/z133XWX9OrVS+68807xB2UxLoHClbHq2rWrbNiwwaQWnDp1Sn7++Wczq+LPeA+Vbmz88f+VshgXf/1bVNpx8YbYhWC2jBw/ftzkFdWpU6fAdr2vq0EDVVmMy969e6Vnz57m1IZ+ffDBB+X8888XX1cWY/PHH3+YU0Ca46Sn3fW2fv168WVl9buk/9n+/e9/l1mzZpn8Nn8MYlwZq9DQUHnrrbfk8ssvN++Pxx57zO9XX7v6HgqE90hJxsYf/18pi3Hx179F/hDbhHq6A7BPPxVD8meW1q5d6+lueKWLL75Y8vLyPN0Nr/TLL794ugte47rrrjM3FMR7xD7+X7GPv0XeG7swM1tGdEWjlu0onAyu97W0SaBiXBxjbOxjXFzHWNnHuDjG2NjHuPj2uBDMlpHw8HBTWHr+/Pn52/STrd7v0aOHBCrGxTHGxj7GxXWMlX2Mi2OMjX2Mi2+PC2kGbtDFE3p1CystzaGnHKpXry4NGzY0pSsGDx5sLnenpyPGjx9vSl4MGTJE/Bnj4hhjYx/j4jrGyj7GxTHGxj7GxY/HpUJrJ/g4LeGiQ1b4Nnjw4Pw2EydOtDRs2NASHh5uylksW7bM4u8YF8cYG/sYF9cxVvYxLo4xNvYxLv47LkH6j6cDagAAAKAkyJkFAACAzyKYBQAAgM8imAUAAIDPIpgFAACAzyKYBQAAgM8imAUAAIDPIpgFAACAzyKYBQAAgM8imAUAEVm4cKEEBQVJcnKyy495/vnnpUOHDuXSn6SkJKldu7bs2bOnxP3zNiV5Dd27d5evv/66XPsFwLcRzAIIGEuXLpWQkBC5+uqrxdu9/PLLcv3110vjxo0lkD377LPy1FNPSV5enqe7AsBLEcwCCBjvv/++PPjgg/L777/LoUOHxFtlZGSYvt5zzz0S6K666ipJS0uTn3/+2dNdAeClCGYBBIRTp07J9OnTZdiwYWZm9sMPPyy2ve6PjY2Vb7/9Vs477zyJjIyUfv36yf79+4u0/eSTT8wMakxMjNx2220m+LKaPXu2XHzxxeZYNWrUkGuuuUZ27txZ7HPPmjVLIiIizCn24ujp9zZt2pi2+vxvvfVWgf2HDx82r7VSpUrSpEkT+fzzz0278ePHF5sK0LVrV6lcubLp80UXXSR79+7N3//DDz/IBRdcYMajZs2acuONNxYYhy5dukjVqlUlLi5OBgwYIImJicW+hsWLF0vPnj1NHxs0aCAPPfSQpKen5+/XmfT+/fvLtGnTij0OgMBFMAsgIHz55ZfSqlUradmypQwcOFCmTp0qFovF6Qypnu7/+OOP5Y8//jC5nhqs2tLAVAPeH3/80dx+++03ee211/L3a2A2YsQIWbVqlcyfP1+Cg4NNAFjcafNFixZJ586di+3b6tWr5ZZbbjH9Wb9+vcnffe655woE6YMGDTIz0BqgauD73nvvFRtcnjlzRm644Qa59NJL5a+//jJpGffee6/Jc1U//fST6bsGl3/++ad5PRr4WuXk5MiLL74o69atM2Oi+b533XWXw+fTsbvyyivlpptuMs+nHzY0uB0+fHiBdvocOiYAYJcFAALAhRdeaBk/frz5Picnx1KzZk3LggUL8vfr9/pf4smTJ839Dz74wNxftmxZfpvNmzebbcuXLzf3x4wZY4mKirKkpqbmt3niiScs3bp1c9iPY8eOmWOsX7/eYZvrr7/ecvfddxfYVrh/AwYMsPTp06dAG33uhISEAn1duXJl/v7t27ebbf/617/sPm9SUpLZv3DhQrv7e/ToYbnjjjssrtLn1uOlpaXZfQ333HOP5d577y3wmEWLFlmCg4Mtp0+fzt/23XffmW25ubkuPzeAwMHMLAC/t3XrVlmxYoXcfvvt5n5oaKjceuutJi+1ONpOT6lb6cyunnrfvHlz/jY9ba+n1a3i4+MLzH5u377dPG/Tpk0lOjo6f0HXvn37HD7v6dOnzWn84mgfNAXAlt7X58vNzTWvWfvfqVOn/P3NmzeXatWqOTxm9erVzUyqplNce+21MmHCBJOqYLV27Vq54oorip0t1sc1bNjQjInO8Bb3WnUGV2eSq1Spkn/T59ZZ6927d+e30xQE3ZaVlVXsmAAITASzAPyeBq16Cr1u3bomwNPbO++8Y069p6SklOrYYWFhBe7rKXnbFAIN7k6cOCFTpkyR5cuXm5vKzs52eEzNRT158qR4wgcffGDSCy688EJz2r9FixaybNmy/KDSEU2n0EBUA/bPPvtMVq5cKd98802xr1XzmO+77z4TJFtvGuBqQN6sWbP8djp+msNb3PMDCFwEswD8mgaxmvOqi6MKB00a3H7xxRfFPlZzXa10tlPzZlu3bu1yrVh9jJaX0hlNfZwrQWrHjh1l06ZNxbbRY2kery29r8GnLprS3GDtv+a2Wu3YscPl5x81apQsWbJE2rZtaxaOqXbt2pk8WXu2bNliXq/mC+uCLp3Fdrb4S2eN9XXqjHHhW3h4eH67DRs2mD4BgD0EswD8mi7K0gBOy1xpYGZ704VHxaUa6KyrlvLS2VQ9ha6n4LXCgO2ip+LoKX2tYKALrzSQ/PXXX81iMGd0hnPjxo3FBp6PPfaYCSx1wdW2bdvko48+krffflsef/xxs1+Dyd69e5sFXJpioUGtfq+zm9YFXYXpqX0NYnVmVisYzJ0718ySWoP3MWPGmOBfv2qagy48e/31180+TS3QAHTixImya9cu+f77703fivPkk0+agFkXfOkHDH2u7777rsgCMF381bdvX6fjBiAwEcwC8GsarGpQp2WzCtNgVmdedSW9PVFRUSbg0hJTmo+qOZ166t1VWrlAS0ppIKzB86OPPipvvPGG08edf/75ZtZSKzA4Yt2vx9djjx49Wl544YUC1QN0RrpOnTpyySWXmCoEQ4cONbmsjvJx9fXqDKuOi87wavD7wAMPmFQAddlll8mMGTNMoKpXPuvVq5cJlFWtWrVM/qvuT0hIMDO0b775ZrGvU2d6tfqDBuM6m6uzr/o6dMbc6uDBgybgHTJkiNNxAxCYgnQVmKc7AQDeRgOzRx55xGOXj9UyWE888YQ5xa5BcVk4cOCAqeX6yy+/FLuQy5vohwmdodbZbQCwJ9TuVgCAR+nFDvS0u85MagBaEprWoIusdKZXqxKMHDnSVFPQmVpfUbt2bZdSMwAELoJZAPBSOjNcGnoRg6efftrksGp6gVYo0EoDhSsweDPNDQaA4pBmAAAAAJ/FAjAAAAD4LIJZAAAA+CyCWQAAAPgsglkAAAD4LIJZAAAA+CyCWQAAAPgsglkAAAD4LIJZAAAA+CyCWQAAAIiv+n92YBm9yiWjzAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Максимальный R²: 0.7344\n",
"Лучшее alpha: 51.79474679231202\n"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from sklearn.linear_model import Ridge\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.pipeline import make_pipeline\n",
"from sklearn.model_selection import cross_val_score\n",
"import numpy as np\n",
"\n",
"# Сетка значений alpha\n",
"alphas = np.logspace(-4, 4, 50)\n",
"r2_scores = []\n",
"\n",
"for alpha in alphas:\n",
" lasso = make_pipeline(StandardScaler(), Ridge(alpha=alpha, random_state=42))\n",
" scores = cross_val_score(lasso, X_train, y_train, cv=5, scoring='r2')\n",
" r2_scores.append(np.mean(scores))\n",
"\n",
"# Построим график\n",
"plt.figure(figsize=(8,5))\n",
"plt.semilogx(alphas, r2_scores, marker='o')\n",
"plt.xlabel(\"Alpha (log scale)\")\n",
"plt.ylabel(\"Mean R² (5-fold CV)\")\n",
"plt.title(\"Зависимость R² от alpha в Ridge\")\n",
"plt.grid(True)\n",
"plt.show()\n",
"\n",
"max_idx = np.argmax(r2_scores)\n",
"max_r2 = r2_scores[max_idx]\n",
"best_alpha = alphas[max_idx]\n",
"\n",
"print(f\"Максимальный R²: {max_r2:.4f}\")\n",
"print(f\"Лучшее alpha: {best_alpha}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}