{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "wwHZs5pbv5lw" }, "source": [ "# Практическая работа №2\n", "## по предмету \"Системы искусственного интеллекта\"\n", "\n", "Целью практической работы является изучение моделей машинного обучения для задачи регрессии.\n", "\n", "Выполните предварительную обработку и анализ набора данных.\n", "\n", "Затем вам необходимо выбрать 3 модели машинного обучения, которые могут решать задачу регрессии, и обучить их на основе данного набора данных. Обязательным условием является построение графика изменения loss для каждой из выбранных моделей. В результате выполнения работы необходимо сделать вывод, какая из моделей лучше подошла для решения поставленной задачи." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "EP_MhQGkw5sW" }, "outputs": [ { "data": { "text/html": [ "
| \n", " | brand | \n", "processor_brand | \n", "processor_name | \n", "processor_gnrtn | \n", "ram_gb | \n", "ram_type | \n", "ssd | \n", "hdd | \n", "os | \n", "os_bit | \n", "graphic_card_gb | \n", "weight | \n", "warranty | \n", "Touchscreen | \n", "msoffice | \n", "Price | \n", "rating | \n", "Number of Ratings | \n", "Number of Reviews | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "ASUS | \n", "Intel | \n", "Core i3 | \n", "10th | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "1024 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "34649 | \n", "2 stars | \n", "3 | \n", "0 | \n", "
| 1 | \n", "Lenovo | \n", "Intel | \n", "Core i3 | \n", "10th | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "1024 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "38999 | \n", "3 stars | \n", "65 | \n", "5 | \n", "
| 2 | \n", "Lenovo | \n", "Intel | \n", "Core i3 | \n", "10th | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "1024 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "39999 | \n", "3 stars | \n", "8 | \n", "1 | \n", "
| 3 | \n", "ASUS | \n", "Intel | \n", "Core i5 | \n", "10th | \n", "8 GB | \n", "DDR4 | \n", "512 GB | \n", "0 GB | \n", "Windows | \n", "32-bit | \n", "2 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "69990 | \n", "3 stars | \n", "0 | \n", "0 | \n", "
| 4 | \n", "ASUS | \n", "Intel | \n", "Celeron Dual | \n", "Not Available | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "512 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "26990 | \n", "3 stars | \n", "0 | \n", "0 | \n", "
XGBRegressor(base_score=None, booster=None, callbacks=None,\n",
" colsample_bylevel=None, colsample_bynode=None,\n",
" colsample_bytree=0.8, device=None, early_stopping_rounds=None,\n",
" enable_categorical=False, eval_metric='rmse', feature_types=None,\n",
" feature_weights=None, gamma=None, grow_policy=None,\n",
" importance_type=None, interaction_constraints=None,\n",
" learning_rate=0.1, max_bin=None, max_cat_threshold=None,\n",
" max_cat_to_onehot=None, max_delta_step=None, max_depth=6,\n",
" max_leaves=None, min_child_weight=None, missing=nan,\n",
" monotone_constraints=None, multi_strategy=None, n_estimators=200,\n",
" n_jobs=None, num_parallel_tree=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. | \n", " | objective | \n", "'reg:squarederror' | \n", "
| \n", " | base_score | \n", "None | \n", "
| \n", " | booster | \n", "None | \n", "
| \n", " | callbacks | \n", "None | \n", "
| \n", " | colsample_bylevel | \n", "None | \n", "
| \n", " | colsample_bynode | \n", "None | \n", "
| \n", " | colsample_bytree | \n", "0.8 | \n", "
| \n", " | device | \n", "None | \n", "
| \n", " | early_stopping_rounds | \n", "None | \n", "
| \n", " | enable_categorical | \n", "False | \n", "
| \n", " | eval_metric | \n", "'rmse' | \n", "
| \n", " | feature_types | \n", "None | \n", "
| \n", " | feature_weights | \n", "None | \n", "
| \n", " | gamma | \n", "None | \n", "
| \n", " | grow_policy | \n", "None | \n", "
| \n", " | importance_type | \n", "None | \n", "
| \n", " | interaction_constraints | \n", "None | \n", "
| \n", " | learning_rate | \n", "0.1 | \n", "
| \n", " | max_bin | \n", "None | \n", "
| \n", " | max_cat_threshold | \n", "None | \n", "
| \n", " | max_cat_to_onehot | \n", "None | \n", "
| \n", " | max_delta_step | \n", "None | \n", "
| \n", " | max_depth | \n", "6 | \n", "
| \n", " | max_leaves | \n", "None | \n", "
| \n", " | min_child_weight | \n", "None | \n", "
| \n", " | missing | \n", "nan | \n", "
| \n", " | monotone_constraints | \n", "None | \n", "
| \n", " | multi_strategy | \n", "None | \n", "
| \n", " | n_estimators | \n", "200 | \n", "
| \n", " | n_jobs | \n", "None | \n", "
| \n", " | num_parallel_tree | \n", "None | \n", "
| \n", " | random_state | \n", "42 | \n", "
| \n", " | reg_alpha | \n", "None | \n", "
| \n", " | reg_lambda | \n", "None | \n", "
| \n", " | sampling_method | \n", "None | \n", "
| \n", " | scale_pos_weight | \n", "None | \n", "
| \n", " | subsample | \n", "0.8 | \n", "
| \n", " | tree_method | \n", "None | \n", "
| \n", " | validate_parameters | \n", "None | \n", "
| \n", " | verbosity | \n", "None | \n", "