{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "CvmiakWDcuyf" }, "source": [ "# Лабораторная работа №3\n", "## по предмету \"Системы искусственного интеллекта\"\n", "\n", "Целью работы является изучение методов регуляризации.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "YEZ0T1uwj34v" }, "source": [ "### Задание 1\n", "\n", "Выгрузите данные из датасета. Изучите колонки, проверьте наличие пропусков. Постройте матрицу корреляции между признаками и целевой переменной. Сделайте выводы, что показывает эта матрица." ] }, { "cell_type": "code", "execution_count": 128, "metadata": { "id": "91NHysjQj26f" }, "outputs": [ { "data": { "text/html": [ "
| \n", " | brand | \n", "processor_brand | \n", "processor_name | \n", "processor_gnrtn | \n", "ram_gb | \n", "ram_type | \n", "ssd | \n", "hdd | \n", "os | \n", "os_bit | \n", "graphic_card_gb | \n", "weight | \n", "warranty | \n", "Touchscreen | \n", "msoffice | \n", "Price | \n", "rating | \n", "Number of Ratings | \n", "Number of Reviews | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "ASUS | \n", "Intel | \n", "Core i3 | \n", "10th | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "1024 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "34649 | \n", "2 stars | \n", "3 | \n", "0 | \n", "
| 1 | \n", "Lenovo | \n", "Intel | \n", "Core i3 | \n", "10th | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "1024 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "38999 | \n", "3 stars | \n", "65 | \n", "5 | \n", "
| 2 | \n", "Lenovo | \n", "Intel | \n", "Core i3 | \n", "10th | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "1024 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "39999 | \n", "3 stars | \n", "8 | \n", "1 | \n", "
| 3 | \n", "ASUS | \n", "Intel | \n", "Core i5 | \n", "10th | \n", "8 GB | \n", "DDR4 | \n", "512 GB | \n", "0 GB | \n", "Windows | \n", "32-bit | \n", "2 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "69990 | \n", "3 stars | \n", "0 | \n", "0 | \n", "
| 4 | \n", "ASUS | \n", "Intel | \n", "Celeron Dual | \n", "Not Available | \n", "4 GB | \n", "DDR4 | \n", "0 GB | \n", "512 GB | \n", "Windows | \n", "64-bit | \n", "0 GB | \n", "Casual | \n", "No warranty | \n", "No | \n", "No | \n", "26990 | \n", "3 stars | \n", "0 | \n", "0 | \n", "
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
| \n", " | fit_intercept | \n", "True | \n", "
| \n", " | copy_X | \n", "True | \n", "
| \n", " | tol | \n", "1e-06 | \n", "
| \n", " | n_jobs | \n", "None | \n", "
| \n", " | positive | \n", "False | \n", "
Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('lasso', Lasso(alpha=100, random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. | \n", " | steps | \n", "[('standardscaler', ...), ('lasso', ...)] | \n", "
| \n", " | transform_input | \n", "None | \n", "
| \n", " | memory | \n", "None | \n", "
| \n", " | verbose | \n", "False | \n", "
| \n", " | copy | \n", "True | \n", "
| \n", " | with_mean | \n", "True | \n", "
| \n", " | with_std | \n", "True | \n", "
| \n", " | alpha | \n", "100 | \n", "
| \n", " | fit_intercept | \n", "True | \n", "
| \n", " | precompute | \n", "False | \n", "
| \n", " | copy_X | \n", "True | \n", "
| \n", " | max_iter | \n", "1000 | \n", "
| \n", " | tol | \n", "0.0001 | \n", "
| \n", " | warm_start | \n", "False | \n", "
| \n", " | positive | \n", "False | \n", "
| \n", " | random_state | \n", "42 | \n", "
| \n", " | selection | \n", "'cyclic' | \n", "
Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('ridge', Ridge(alpha=100, random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. | \n", " | steps | \n", "[('standardscaler', ...), ('ridge', ...)] | \n", "
| \n", " | transform_input | \n", "None | \n", "
| \n", " | memory | \n", "None | \n", "
| \n", " | verbose | \n", "False | \n", "
| \n", " | copy | \n", "True | \n", "
| \n", " | with_mean | \n", "True | \n", "
| \n", " | with_std | \n", "True | \n", "
| \n", " | alpha | \n", "100 | \n", "
| \n", " | fit_intercept | \n", "True | \n", "
| \n", " | copy_X | \n", "True | \n", "
| \n", " | max_iter | \n", "None | \n", "
| \n", " | tol | \n", "0.0001 | \n", "
| \n", " | solver | \n", "'auto' | \n", "
| \n", " | positive | \n", "False | \n", "
| \n", " | random_state | \n", "42 | \n", "